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o] Background
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» Digitalization and automation is a topic of interest in the maritime industry.

Digital twin Remote control Autonomous ship

Understanding the current environmental conditions is important for safe operation and control
of the vessel.

- Sea state condition is a key environmental condition.
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1. Represent ocean waves:

* Ocean waves are stochastic with time.
* The statistical properties can be evaluated.

* The statistical properties are not likely to
change for hours (short-term statistics).

2. Tools to obtain the sea state information:

Wave buoy:
+  Estimate wave from o
motions (roll, pitch, heave)..~
*  Moored to the seabed
(fixed to a specific
location).

. Shallow water.
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Wave radar:
* Image time series analysis.

* Not good at wave height.
*  Only limited vessel have it.
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, A ship can be considered as a large wave buoy and the
~Sorreet (pich) motion responses (heave, pitch, roll) reflect the sea
L e state condition.

Challenges:

* The relationship between wave and ship motion is hard to
obtain accurately.

R * The moving of ship adds extra complexity.

w(heave)

Goals:

+ Develop a model to estimate the on-site wave statistics using ship motion responses.
* Explicit feature representation.

Mappings

Ship motion E— ) Sca state information
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Ship motion data:

* R/V Gunnerus from 2017 to 2019.
« Stationary condition.

« sway velocity, roll, pitch, heave.

« Sampling frequency 1 Hz.

Data match:
Nearest neighbor

&
<«

Significant wave height (m)
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Wave data:

Norwegian Meteorological Institute.
Significant wave height, mean wave

direction, peak period.
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+ Datais cut into 10 minutes segment without overlapping.
« Significant wave height > 0.2m.
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1. Data pre-processing:
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2. Feature extraction:

+ Domain-knowledge features: forward speed (Doppler shift), course angle — heading angle.
+ Statistical features: mean, variance, skew, kurtosis, etc.
+ Temporal features: absolute energy, zero cross, autocorrelation, etc.

+ Spectral features: use Welch method to transform the signal into frequency domain. Centroid,
variation, fundamental frequency, etc.

+ Wavelet features: wavelet transform is a time frequency analysis method which can split a
signal into different frequency sub-bands. The Daubechies wavelet of order 1 (db1l) is selected as
the basis function and the decomposition level is five.
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3. Feature selection:

Maximum relevance minimum redundancy (mMRMR):

1
= ¥ I(xg,x;) (1)

Jmrmr(xi) = 1(y,x;) —
|S‘ xXES

Where [() is mutual information, S is the feature set, y is the target.

4. Model development:

+ K-nearest neighbour regression (kNN): predict a testing point based on a fixed number k of its
closest neighbors in the feature space.

» Support vector regression (SVR): same principle as the SVM (maximum-margin). RBF kernel
is used in this paper.

+ Gradient boost decision tree (GDBT): an ensemble model using gradient boost technique with
decision trees as base learners.

Ensemble (voting): averaging the results from above three models.
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The experimental results are evaluated with 5-fold cross-validation using mean absolute
error (MAE).

1. Baseline comparison:

TABLE 1
THE MAE VALUES OF THE DIFFERENT METHODS

Models:

Wave Characteristics

EN: Linear regression with elastic net
regularization

higact his (m) D ) T, 5) «  MLP: Multi-layer perceptron
EN 0.484+0.027 | 77.59+3.32 | 2.032+0.172
MLP 043120045 | 71.842650 | 1.851L0.119 *  RF:Random forest
RF 0.378 +0.024 64.34+4.62 1.686+0.116 . kNN k-nearest neighbor
kNN 0.359+0.025 | 60.02+3.58 | 1.655+0.095
SVR 0.361 £0.024 | 60.96+2.58 | 1.649+0.100 *  SVR: Support vector regression
GBDT 0.337+0.027 | 59.28+£2.26 | 1.607+0.096 . . : o
SeaStateNet | 0348 L0.019 | 53.8253.09 | 1.659L0.178 GDBT. Gradient boost decision tree
Our ensmble | 0.334+0.030 | 57.72+1.30 | 1.528+0.084 + SeaStateNet: Deep learning model proposed

on ICRA2019
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2. Ablation study:

Evaluation on the constructed features

fy
f,
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: Domain-knowledge features

. Statistical features
: Temporal features
. Spectral features

: Wavelet features

TABLE I

COMPARISON OF DIFFERENT FEATURES

Wave Characteristics

Features 7 () D,y ) T, ©)

N+ 0.4314+0.034 | 73.26+4.43 | 1.956+0.091
h+rfi+f 0.3514+0.027 | 61.96+4.41 | 1.6344+0.130
h+hHh+fi+1h4 0.3384+0.025 | 58.21+2.30 | 1.546+0.093
h+h+H+fa+f | 0334+£0.030 | 57.72+1.30 | 1.528+0.084

Evaluation on the number of used features
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Experimental results

3. Feature importance:

Feature importance can be measured by the total Gini gain from the GDBT model.
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Peak period
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« A machine learning model is developed for estimating the sea state information from
measured ship motion responses.

* The developed model with hand-craft features archive similar and even slightly better
performance than the deep learning model.

* The extracted features are explainable, which can be used to build a explainable
model in the future.



Thanks




