

Data-driven sea state estimation from motion responses

Peihua Han, Guoyuan Li, Stian Skjong, Baiheng Wu, Houxiang Zhang

Content

- Background
- Motivation
- Data collection and Methodology
- Experimental Results
- Conclusions

D NTNU

Background

• Digitalization and automation is a topic of interest in the maritime industry.

Digital twin

Remote control

Autonomous ship

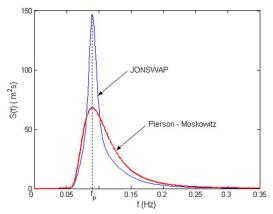
Understanding the current environmental conditions is important for safe operation and control of the vessel.

- Sea state condition is a key environmental condition.

Motivation

1. Represent ocean waves:

- Ocean waves are stochastic with time.
- The statistical properties can be evaluated.
- The statistical properties are not likely to change for hours (short-term statistics).



Sea state statistics: significant wave height, etc.

2. Tools to obtain the sea state information:

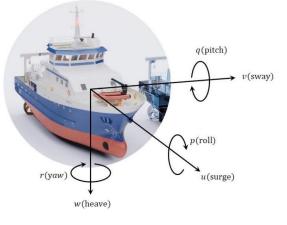
Wave buoy:

- Estimate wave from motions (roll, pitch, heave)
 - Moored to the seabed (fixed to a specific location).
 - Shallow water.

Wave radar:

- Image time series analysis.
- Not good at wave height.
- Only limited vessel have it.

Motivation



A ship can be considered as a large wave buoy and the motion responses (heave, pitch, roll) reflect the sea state condition.

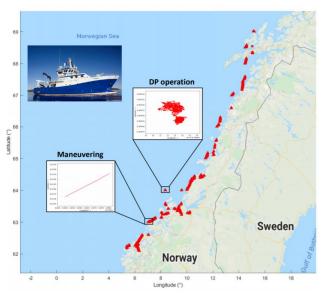
Challenges:

- The relationship between wave and ship motion is hard to obtain accurately.
- The moving of ship adds extra complexity.

Goals:

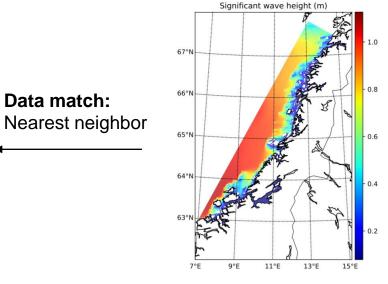
- Develop a model to estimate the on-site wave statistics using ship motion responses.
- Explicit feature representation.

Data collection



Ship motion data:

- R/V Gunnerus from 2017 to 2019.
- Stationary condition.
- sway velocity, roll, pitch, heave.
- Sampling frequency 1 Hz.

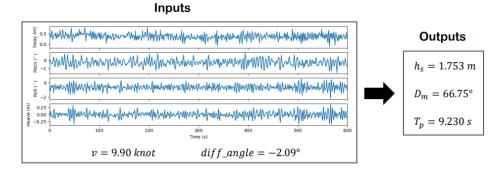


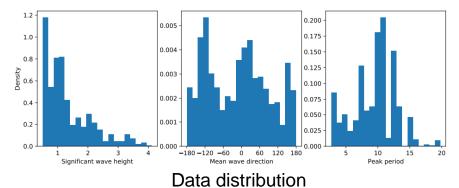
Wave data:

- Norwegian Meteorological Institute.
- Significant wave height, mean wave direction, peak period.

Data collection

- Data is cut into 10 minutes segment without overlapping.
- Significant wave height > 0.2m.

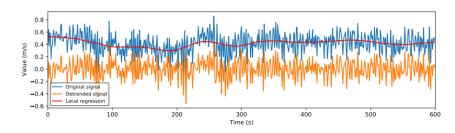




NTNU

Methodology

1. Data pre-processing:



- Remove low-frequency motion.
- Remove measurement offset.

2. Feature extraction:

- **Domain-knowledge features:** forward speed (Doppler shift), course angle heading angle.
- Statistical features: mean, variance, skew, kurtosis, etc.
- Temporal features: absolute energy, zero cross, autocorrelation, etc.
- **Spectral features:** use Welch method to transform the signal into frequency domain. Centroid, variation, fundamental frequency, etc.
- Wavelet features: wavelet transform is a time frequency analysis method which can split a signal into different frequency sub-bands. The Daubechies wavelet of order 1 (db1) is selected as the basis function and the decomposition level is five.

Methodology

3. Feature selection:

Maximum relevance minimum redundancy (mRMR):

$$f_{mRMR}(x_i) = I(y, x_i) - \frac{1}{|S|} \sum_{x \in S} I(x_s, x_i)$$
(1)

Where I() is mutual information, S is the feature set, y is the target.

4. Model development:

- K-nearest neighbour regression (kNN): predict a testing point based on a fixed number k of its closest neighbors in the feature space.
- Support vector regression (SVR): same principle as the SVM (maximum-margin). RBF kernel is used in this paper.
- Gradient boost decision tree (GDBT): an ensemble model using gradient boost technique with decision trees as base learners.

Ensemble (voting): averaging the results from above three models.

Experimental results

The experimental results are evaluated with **5-fold cross-validation** using **mean absolute error (MAE)**.

1. Baseline comparison:

TABLE I

THE MAE VALUES OF THE DIFFERENT METHODS

Model	Wave Characteristics		
	$h_{s}(m)$	$D_m(^\circ)$	$T_{p}(s)$
EN	0.484 ± 0.027	77.59 ± 3.32	2.032 ± 0.172
MLP	0.431 ± 0.045	71.84 ± 6.50	1.851 ± 0.119
RF	0.378 ± 0.024	64.34 ± 4.62	1.686 ± 0.116
kNN	0.359 ± 0.025	60.02 ± 3.58	1.655 ± 0.095
SVR	0.361 ± 0.024	60.96 ± 2.58	1.649 ± 0.100
GBDT	0.337 ± 0.027	59.28 ± 2.26	1.607 ± 0.096
SeaStateNet	0.348 ± 0.019	53.82±3.09	1.659 ± 0.178
Our ensmble	0.334 ± 0.030	57.72 ± 1.30	1.528 ± 0.084

Models:

- EN: Linear regression with elastic net regularization
- MLP: Multi-layer perceptron
- RF: Random forest
- kNN: k-nearest neighbor
- SVR: Support vector regression
- GDBT: Gradient boost decision tree
- SeaStateNet: Deep learning model proposed on ICRA2019

NTNU

Experimental results

2. Ablation study:

Evaluation on the constructed features

- f1: Domain-knowledge features
- f₂: Statistical features
- f₃: Temporal features
- f_4 : Spectral features
- f_5 : Wavelet features

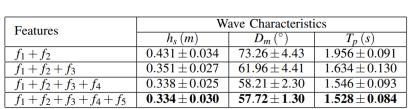
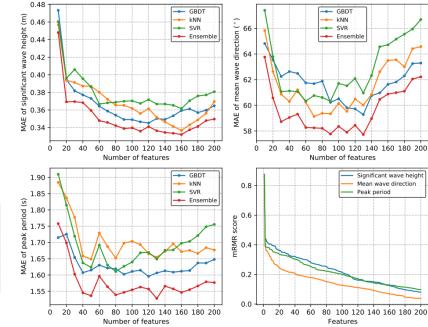


TABLE II

COMPARISON OF DIFFERENT FEATURES

Evaluation on the number of used features

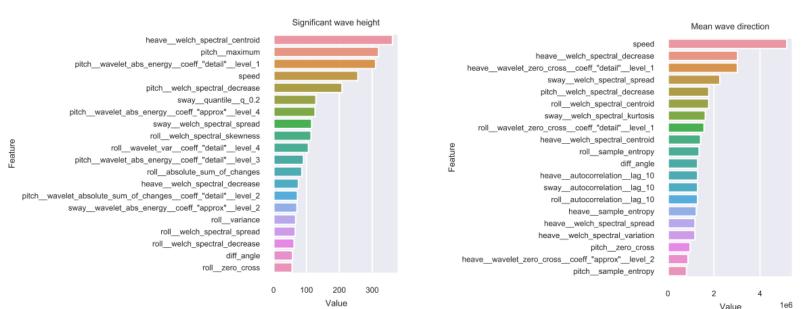


NTNU

Experimental results

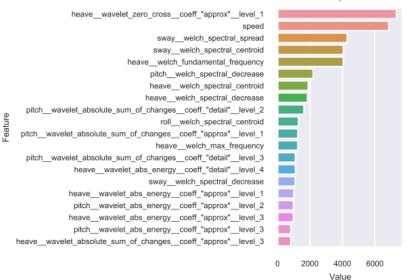
3. Feature importance:

Feature importance can be measured by the total Gini gain from the GDBT model.



Feature type: Shape of the spectrum

Experimental results



Peak period

Feature type: wavelet features, spectral shape

NTNU

Conclusions

- A machine learning model is developed for estimating the sea state information from measured ship motion responses.
- The developed model with hand-craft features archive similar and even slightly better performance than the deep learning model.
- The extracted features are explainable, which can be used to build a explainable model in the future.

Thanks