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Abstract—Maritime operations are inevitably influenced by the
wind, wave, sea currents, and other perturbations at sea. Pro-
viding decision support for these operations based on historical
and real-time data of ship status is thus of great concern in
terms of ship safety. However, it is challenging for collecting
and analysis large quantities of ship data in real operations.
Moreover, the development of an onboard decision support
system (DSS) will be a gradual and iterative process subject
to extensive testing and simulation. Consequently, the paper
presents an integrated simulation framework which provides
testing and simulation environment for the DSS development. The
system enables navigation data transmission from a well-designed
simulator and automatic determining of the safe maneuver of a
ship within the framework. The development of DSS is divided
into three steps. The ship maneuvering data from simulator is
collected; the data is then classified and fed into an imitation
learning (IL) algorithm to learn an initial policy; the result
is further applied to an reinforcement learning (RL) algorithm
for safe decision making of the operation. In this way, it could
speed up the learning efficiency by extracting more information
from available experience. To verify the effectiveness of the
proposed integrated simulation framework, in this study, we
implemented the proposed DSS in ship docking operation under
various environmental disturbances. It is interacted with the
simulator to obtain data. By processing these data, it provides the
shipmaster with the information about the consequences of the
ship maneuvering decisions. The simulation results demonstrate
that the proposed DSS could assist the shipmaster in deciding
policies and increase the efficiency of decision making.

Index Terms—ship docking, decision supporting system, imi-
tation learning (IL), reinforcement learning (RL)

I. INTRODUCTION

In congested sea conditions, the marine operation becomes
difficult due to much consideration of positioning and head-
ing requirements in a short time. Besides, the presence of
uncertainty, in the form of environmental disturbances like
wind, wave, and sea current, further increases maneuver-
ing complexity. Analysis based on the Norwegian Maritime
Directorate incident database shows risk influencing factors
in maritime accidents could relate to weather, geographic,
visibility, technical failures, and human errors [1]. Notably,
human-based error is the main reason for that. For instance,
for ship docking application, current knowledge of practices,
and risk management on board the ships is primarily based on
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experience. Therefore, to reduce human-based errors in ship
operations, a more intelligent decision support system (DSS)
based on fact-based knowledge and circumstances concern-
ing the ship-environment status are needed to increase ship
safety [2]. The DSS can be used to observe the surrounding,
predict the ship’s responsive motions and supply the ship-
master with information on suitable control command. There
are already existing works about DSS development in several
fields such as UAV [3], and autonomous ships [4, 5]. However,
the challenge in developing such a system comes from two
respects: 1) how to obtain the motions of the ship dynamically,
and 2) what data should be included and how to use the
collected motion data to extract the suitable information for
decision making.

To achieve this, at first, we propose an integrated simulation
framework for DSS by integrating a well-designed simulator.
The simulator can offer extensive scale data that can be
collected much faster than in the real world. Based on this, the
DSS can analyze the real-time data on sea conditions alongside
historical information about a ship’s performance to set its
optimum action. From the simulator point of view, the DSS
will be designed for use in crew training, supporting the crew
with information on how the ship will perform in real life.
From the DSS point of view, it will take advantage of the
significant amount of data available for analysis, to provide
onboard support, such as visualizing complex surroundings
and illustrating future prediction of the situation for either
achieving autonomy or remote control.

Secondly, we use these dataset as input to an reinforcement
learning (RL) algorithm that decides what action to take.
Even though RL has been widely applied in autonomous
ships and showed a good performance in applications such as
auto docking [6], autopilot [7, 8], collision avoidance [9, 10],
and so on, it remains relatively limited primarily due to 1)
extremely high time cost of exploring and sampling. 2) highly
rely on the problem definition, especially the reward function
design. An alternative data-driven method is called imitation
learning (IL). It learns an optimal policy by imitating the
expert’s decision from demonstrations data instead of learning
from a specified reward function [11]. One of the limitations
of IL is the requirement of plenty of demonstrations data.
Moreover, the obtained policy works efficiently in specific
simple applications but hard to scale very well. Consequently,



Fig. 1. Overview of integrated simulation framework for DSS.

combining IL and RL can be an efficient way for complex
marine operation in the context of shipmaster’s demonstrations
are available from a simulator. Given such demonstrations, IL
algorithm can be used to train a policy that maps perceptual
inputs to action, then use the initial policy to fine-tuning the
RL policy. [12, 13]

In this paper, we propose an integrated simulation frame-
work to provide the test environment for the DSS. Section
II introduces each component for the framework. In Section
III, we present the implementation for ship docking operation
using the intelligent DSS, which combines the IL and RL
modules inside. The simulation result will be shown in Section
IV. Finally, the conclusion and future works will be discussed
in Section V.

II. COMPONENTS FOR THE INTEGRATED SIMULATION
FRAMEWORK

This section presents the definitions and theoretical back-
ground of the integrated simulation framework. Fig. 1 illus-
trates the scheme of integrated simulation framework, which
involves a well-designed simulator and the DSS. The simulator
used in this study is from Norwegian University of Science and
Technology (NTNU) research laboratory located at Ålesund
campus; the DSS is a system where logging data obtained
from the research simulator, making informed decisions re-
garding ship performance under environmental conditions and
sending the suggested information such as reference trajectory,
velocity, and control command back.

A. NTNU research simulator

As shown in Fig. 2, NTNU research simulator is a center
that aims to test technology, methodology, and procedure for
remote control of various functions on ships. The research area
is included all work stations on a ship or in a control center for
manually, autonomous or semi-autonomous control. It includes
navigation bridge, operation bridge (aft bridge), engine room,
crane, ROVs, winch, and operation manager (on-shore and

Fig. 2. Layout of the NTNU research simulator.

offshore). All interfaces are real interfaces commonly used in
the industry. In addition, all the work stations are flexible to
perform various navigation scenarios. Control operation can
be replaced for customized set-up, and workplaces can be
modularized, and a minimum of interfaces to simplify testing
of equipment of different tasks.

The main objective of the research simulator is to simulate
the different expected conditions and train the navigators to
make decisions based on real-time data. It also provides high-
quality and updated weather forecasts to help them to under-
stand the ship’s behavior better, and take the appropriate action
due to different environmental conditions. The navigators have
to plan a route based on their experience during the training
process. At the same time, a significant amount of simulation
data could be stored.

B. Configuration of DSS

Based on the stored dataset, we use the proposed DSS to
learn a policy that will support the onboard decision making.
It contains three modules: data acquisition module, IL module,
and RL module.

1) Data acquisition module: The data acquisition module is
responsible for collecting and pre-processing demonstrations
data from the research simulator.

2) IL module: Given such demonstrations data, the IL mod-
ule can be used to learn a maneuvering policy that achieves
similar performance compared to the expert. As there already
exists the simulator platform built through system engineering
principles, we could collect the expert’s demonstrations instead
of implementing expensive real ship experiments.

Behavior cloning (BC) is one of the imitation learning
techniques, which treats imitation learning as a supervised
learning problem. In BC, we have the labeled state-action
pairs from the expert’s demonstrations, and we use the IL
to train a policy by using the loss function between the
expected output variable and the labeled target data (action).
The goal is to approximate the policy so that we can mimic the
behavior model of expert’s demonstrations. As a result, IL is
used to learn the sequential decision-making policy that maps



Fig. 3. Overview of reinforcement learning.

perceptual inputs to outputs. The learning result can either
serve for the initial policy for RL or formulate the references as
prior knowledge for prediction of future operation. However,
it is sometimes hard for adequate expert demonstrations. More
importantly, the learned policy can only perform at most as
well as the guiding expert’s policy and it may have poor
performance in new unseen situations due to a shift from the
training data distribution.

3) RL module: Unlike other approaches to machine learn-
ing such as supervised learning, where a batch of data for
training is made available for the agent, RL methods depend
on gathering this data in a process, where an agent interacts
with an environment (e.g., an autonomous ship) by following
a policy, as illustrated in Fig. 3. Note that the policy here is
always initialized stochastic.

RL aims to deal with teaching the agent the connection
in between states and actions, known as state-action pairs
{(s, a)}, with the aim of maximizing a user defined reward
r. Subsequently, with environments of strong interconnections
of such pairs and future rewards possible RL is rendered a
complex problem. In each state of the environment, it takes
action based on the stochastic policy π(a|s), and as a result,
receives a reward r and transitions to a new state. The goal of
RL is to learn an optimal policy that maximizes the long-term
cumulative rewards [14].

RL has shown great potential in improving system per-
formance autonomously by learning from iterations with the
environment. It has achieved significant progress in solving
this sequential decision problem, from autonomous driving
cars like Google Waymo [15], to playing video games [16].
The RL algorithm for solving these problems generally can
be categorized into model-free and model-based approaches.
Model-free RL algorithms are capable of solving a wide range
of control problems. However, it typically requires a huge
number of samples to achieve good performance. Also, it
can suffer from vast and high dimensional possible state and
action space, which can result in an insufficient exploration or
prohibitively long training time. Therefore, direct application
model-free RL is not only sampling insufficient, but costly and
dangerous in our applications. Although model-based RL may
require fewer samples, it can lead to suboptimal, potentially
unstable results [17, 18]. Considering these limitations, we use
the initially trained policy from the IL module to initialize
the model-free RL policy. In this way, the model-free RL

Fig. 4. A ship docking scenario manoeuvred by a shipmaster in the research
simulator.

could learn complex tasks using relatively small samples when
compared to purely model-free RL. Thus we combine the
benefits of IL and model-free RL by using the initial policy
to initialize a model-free RL.

C. Onboard decision support for ship operation

Based on the integrated simulation framework (see Fig 1),
the proposed DSS could offer various decision supports for
shipmasters or automatic maneuvering in different operational
scenarios. These include a reference trajectory, control com-
ment, and guidance speed. Firstly, the RL module could com-
pute a reference trajectory before the ship prepares to depart.
Second offerings could be the control command like rudder
angle and propeller revolution during the ship maneuvering.
In addition, as the ship speed is a significant factor to affect the
ship safety, it could be regarded as a decision support element.

III. IMPLEMENTATION OF THE PROPOSED DSS

A. Ship docking scenarios

An expert’s demonstration dataset is generated by the oper-
ation from shipmasters in the integrated simulator, as shown
in Fig. 4. The simulator offers extensive data about the ship
and environment that can be collected much faster than in
the real world. To collect expert’s demonstrations, experienced
shipmasters are asked to perform ship docking operation to
Ålesund harbor. Here we assume that the human operators per-
form perfectly, which ensures that these demonstrations data
could be used to learn a good docking policy representation.

To generate a good initial policy from the IL module, we
have to make sure that the data used for training must consist
of situations with enough diversity, such as various initial
heading angles. How much the training dataset explores the
environment would play a vital role in the learned policy’s
performance. As shown in the table I, we perform the ship
docking operations from a defined starting point to the Ålesund
harbor for eight scenarios, and repeat three times for each
scenario to get more demonstrations. Here, the initial heading
angle is set from 0 degrees to 315 degrees with a 45-degree
interval. The wind direction and wind speed are set as 100
degrees and 10.5 knots respectively. After the collection of



TABLE I
SIMULATION SETUP FOR SHIP DOCKING SCENARIOS.

Num. Wind direction and speed
[deg] [knots]

Start and end position
[deg]

Initial heading
[deg]

1

100
10.5

62°27’99” N, 006°09’79”E
62°28’14”N, 006°09’45”E

0
2 45
3 90
4 135
5 180
6 225
7 270
8 315

demonstrations, a dataset D including information about ship
position, ship velocity, control command is saved for training
an initial policy with IL.

B. Problem definition of IL module

The goal of the imitation learning is to learn a basic policy
that imitates the behavior of the shipmaster. Given the expert’s
demonstration dataset D of states and actions collected during
the 24 sets scenarios over T time steps, the loss function for
learning a policy parametrized by θ by supervised learning can
be written as

L(θ) = 1

2
(aπθ (st)− at)2 (1)

where aπθ (st) is the action predicted by the policy-network πθ
at state st and at is the labeled action from the demonstrations.
As a result, taking the expert’s docking policy as a supervision
signal, we can get a relatively good policy from the IL module.
Then we can use it as an initial policy for the subsequent
reinforcement learning phase, which can significantly reduce
the training time, stabilize the training process, and produce
better results than training from scratch.

C. Problem definition of RL module

1) RL setup: The sequential decision-making for the auto-
docking problem can be formulated as a Markov decision
process (MDP) in an RL framework illustrated in Fig. 3.
The decision-maker, i.e., the ship, also called as an agent
πθ, parametered by θ at each time step t, executes an action
at ∈ A, at state st ∈ S in the environment; the environment,
in turn, yields a new state st+1 and a reward rt ∈ R. The
definition of the state, action, and reward function for the ship
docking task is described as follows:
• As illustrated in Fig 5, the ship uses the reference system

with velocities being surge u, sway v and yaw r. The ship
position Pt is saved in Universal Transverse Mercator
(UTM) coordinates in the raw dataset, and we translate it
to a Cartesian coordinate with the origin at start point
of a docking demonstration. Pgoal represents the goal
position near the port. We define a state gt as a ship’s
relative goal position, i.e. the coordinates of the goal in
the ship’s local polar coordinate frame. ψt and χt refer
to the heading angle and course angle of the ship. φ̃t is
the relative angle between the course angle of the ship
and angle pointing to the destination from the ship. αt is
the relative angle between the heading angle of the ship
and the quay. In addition, the previous predicted action

Fig. 5. State and action space definition for the RL problem.

at−1 is also included in the state vector. Thus, the state
space is represented as follows:

st = [Pt, gt, ψt, χt, φ̃t, αt, at−1] (2)

• During ship maneuvering, the shipmaster steers a ship
by controlling the rudder angle. The rudder angel δ can
create a moment about the centre of gravity of the ship,
and thus change the ship’s orientation by giving a drift
angle correspondingly. As a result, we set the action space
as at = δ in this study.

• The reward function is computed as the sum of the
rewards accumulated in each episode. It is a measurement
of the quality of the action. At first, the reward function
can be specified to reward the ship for approaching
the destination. It is designed to constraint the ship to
reach the docking position next to the quay. The goal
reward Rgoal is designed to guide the ship to achieve the
destination. This can be expressed mathematically as:

Rgoal =


rgoal if ‖Pgoal − Pt‖2<10.0

λg(‖Pgoal − Pt−1‖2−
‖Pgoal − Pt‖2) otherwise

(3)
where λg refers to a hyper-parameter. When the ship is
directly approaching the destination, the more substantial
goal reward value is imposed on the agent. Second, the
reward function can be specified to reward the ship to
arrive with the correct heading. Consequently, Rheading
will help training converge in guiding the ship towards
and parallel to the quayside. The angle error between the
heading angle of the ship and the quay αt should be small
than a predefined parameter αε.

Rheading =

{
λh(αε − αt) if ‖Pgoal − Pt‖2 < 3 ∗ L
0 otherwise.

(4)
The reward received by the ship at timestep t is a sum
of the two terms above.

2) Training process: Given the input st and output at, we
create the a policy neural network mapping st to at and a
critic network to predict a state value function for each state.



To represent the policy network, we use a fully-connected
multilayer perceptron with two hidden layers consisting of
64 and 64 hidden units respectively with tanh nonlinearities
predicting the probability over the action space. In the process
of training, the state is transmitted to the neural network,
and the agent selects and executes an action according to the
predicted result with the highest probability.

Training of the critic and policy networks is performed by
defining the surrogate loss functions for each network. Then,
back-propagate gradients computed with the surrogate loss
function are used to update the weights of the network. We
refer to the network trained with this approach as PPO [19], as
shown in Algorithm 1. Note that the policy network training
was initialized by the policy based on expert’s demonstrations.
This enables a transition from IL to RL without performance
degradation and improves RL in terms of overall performance
and reduces training time.

Algorithm 1 Combining IL with RL for ship docking.
1: Input: Demonstrations dataset D = {(st,at)}Nt=1.
2: First: Train the policy network πθ by IL
3: for iteration = 1, 2, . . . , NIL do # imitation learning
4: Update πθ with the Equation 1 by gradient descent
5: end for
6: Second: Initialize value network Vφ(st), train πθ and
Vφ(st) by RL

7: for iteration = 1, 2, ..., NRL do
8: Run policy πθ for T timesteps, collecting {st, rt,at},

where t ∈ [0, T ]
9: Estimate advantages, Ât =

∑T
l=0(γλ)

lδt, where δt =
rt + γVφ(st+1)− Vφ(st)

10: break, if T > Tmax
11: πold ← πθ
12: for j = 1, ..., Eπ do
13: rt(θ) =

πθ(at|st)
πold(at|st)

14: LPPO(θ) =
∑Tmax
t=1 min(rt(θ)Ât, clip(rt(θ), 1 −

ε, 1 + ε)Ât)
15: Update θ with lrθ w.r.t LPPO(θ)
16: end for
17: for k = 1, ..., EV do
18: LV (φ) = −

∑T
t=1(

∑
t′>t γ

t′−trt′ − Vφ(st))2
19: Update φ with lrφ by Adam w.r.t LV (φ)
20: end for
21: end for

IV. SIMULATION RESULT FOR SHIP DOCKING OPERATION

As described in the previous sections, we collect docking
trajectories from the expert’s maneuvering in the integrated
simulation framework. Then we use the dataset to train an
initial policy for RL using BC.

In the beginning, we train a ship from a starting position
to converge to a defined quayside. The general description of
the ship is presented in II. The final heading will parallel with
the quayside in 90 degrees. During the training process, the
starting position and initial heading are generated randomly.

TABLE II
GENERAL DESCRIPTION OF THE SHIP.

Model:
Ship Assist Tug Value

Length O.A. 30.8 [m]
Beam 11.1 m
Draft 3.5 [m]
Displacement 615 [ton]
Speed ahead 12.5 [kn]

Fig. 6. Ship trajectory and heading with the 0 degree initial heading: compare
with the expert’s demonstrations

The starting position is selected within a 5-meter range, and
the initial heading is selected within 360 degrees range.

When the ship achieves reliable performance, we save the
trained policy and test it using a defined starting position
and heading angle. To validate the feasibility of the proposed
algorithm, we compare the ship trajectory using the RL with
the expert’s demonstration in the simulator. As shown in Fig. 6,
we can find that the behavior of the training result is very
similar to the expert. When we arbitrary set the initial heading
as -37 degrees, the ship can arrive at the quay smoothly with
an approximately 90 degrees heading. The simulation result is
illustrated in Fig. 7.

Fig. 8 shows the average reward during the training of the
RL policy. We can find that the reward function increases along
with the training process.

V. CONCLUSION AND FUTURE WORKS

In this study, we proposed an integrated simulation frame-
work, which aims to create a reliable decision support system
(DSS) that will assist the shipmaster in deciding action and
efficient ship maneuvering. We take the docking operation as



Fig. 7. Ship trajectory and heading with the -37 degree initial heading.

Fig. 8. Average reward for ship docking.

an example to verify the effectiveness of the DSS. In such sce-
narios, ships should be carefully aware of their surroundings
and make decisions based on the sensor input. Under harsh
environmental conditions, the ship docking operation mainly
relies on the human experience and knowledge of the past to
make decisions. Consequently, an intelligent DSS for docking
operation is developed. The demonstrations dataset is collected
from a research simulator then transmitted to an IL module,
which can efficiently obtain intelligence of decision making for
docking scenarios. It can be treated as guidance to accelerate
the training efficiency of RL. RL can calculate the correspond-
ing action under various environmental conditions and initial
heading. Thus combining IL and RL can be an efficient and
promising method for the ship docking application.

The experimental results show that the resulting imitation
policies perform favorably compared to those generated by
existing imitation learning approaches that do require access

to demonstrator actions. We can conclude that the DSS has
the potential to provide decision support and predictions for
the shipmaster.

The proposed DSS will validate by the real ship operation in
the future. We believe that the dataset from real ship operations
can be used to further research in this area with multiple and
complex tasks. Furthermore, it can be considered to be applied
to achieve an auto-docking operation.
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