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Abstract—Sea state estimation is a fundamental problem in
the development of autonomous ships. Traditional methods such
as wave buoy, satellites, and wave radars are limited by loca-
tions, clouds and costs, respectively. Model-based methods are
prone to incorrect estimations due to their high dependency on
mathematical models of ships. As previous data-driven studies
for sea state estimation only consider wave height and use
the motion data from dynamic positioning vessels, this paper
introduces a new, deep neural network (SSENET) to estimate
sea state in light of both wave height and wave direction,
and extends the generality of sensor data from ship motion
with forward speed. SSENET is built on the basis of stacked
convolutional neural network blocks with dense connections
between different blocks, channel attention modules and a feature
attention module. The dense connections build short-cut paths
between input and all subsequent convolutional blocks, which
can make full use of all the hierarchical features from the
original time series sensor data. The channel attention modules
aim to enhance the features extracted by each convolution block.
The feature attention module focuses on combining the feature
fusion of hierarchical features in an adaptive manner. Benchmark
experiments show the competitive performance against state-of-
the-art approaches. Applying the SSENET on two datasets of
zigzag motion for comparative studies shows the effectiveness of
the proposed method.

Index Terms—Autonomous ships, densely connected CNN, sea
state estimation, ship intelligence, time series classification.

I. INTRODUCTION

SHIP intelligence aims to make the marine and offshore
industries more efficient, innovative, and adaptable to

future operations. In fact, ship intelligence has been listed as
an important part of the digital agenda, one of the pillars of
the European growth strategy [1]. In recent years, interest in
development and employment of autonomous ships has in-
creased. Autonomous ships use intelligence to make decisions
that increase the control precision, lower the fuel consumption,
and extend the operational window [2]. Autonomous ships face
greater challenges than autonomous cars, mainly because of
the more complicated environment at sea. Wind and waves
are the most vexing aspects of this environment. Therefore,
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it is significant to develop a real-time and reliable method to
estimate the sea state to aid on-board decisions.

Traditional technologies to estimate the sea state usually
include manual observations, wave buoys, X-band wave radar,
and meteorological remote sensing satellites or weather fore-
casts [3]. The advantage of manual observations is that the
data has high persistence and does not depend on external
sensors. However, manual observations themselves can be very
subjective. The advantage of the wave buoy is that the obser-
vation data is highly reliable and comparable. Nevertheless, its
shortcomings include weak ability to resist wind and waves,
human installation and placement, and wide application in
close coast. The cost of X-band wave radar is usually high and
requires regular calibration and maintenance; meteorological
remote sensing satellites are very susceptible to clouds; and the
weather forecast is often subjected to a time delay of several
hours.

In recent years, in order to overcome the shortcomings
of traditional sea state estimation technologies, several re-
searchers have made extensive explorations on the identifica-
tion of environmental conditions based on onboard measure-
ments [4]. A ship can be considered as a large wave buoy,
and hence, it is essentially equipped with an environmental
conditions estimation system [5]. The use of ship motion
data to identify sea states usually involves model-based and
model-free methods. The model-based methods are mainly
designed to utilize domain knowledge to establish a mathe-
matical model of ship motions [6]. However, the drawback
of these method is that because they rely on mathematical
models and corresponding assumptions, they are prone to
incorrect identifications due to the randomness of waves.
The model-free methods, on the other hand, are employing
conventional machine learning or deep learning techniques
to extract temporal and frequency features. The advantage of
these techniques is that they do not depend on prior domain
knowledge and they are easier to generalize. In other words,
they can be applied to several vessels. Nevertheless, to the
best of our knowledge, the previous model-free methods only
considered the onboard measurement of dynamic positioning
(DP) motion and only considered the height of the waves
without considering the direction of the waves [3], [7].

DP motion, used in [3], [7], represents a special kind of
maneuvering, which involves maintaining a fixed location or
performing a very slow tracking task [8]. The use of this
special maneuvering to estimate sea state lacks generality
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because most ships do not have a DP system, and those that do
are generally moving forward when in operation. Meanwhile,
wave direction is as important as wave height, which can be
used as a control variable for vessels. Thus, it is necessary to
estimate sea state, including wave height and direction using
the measurements of general ship maneuvering. To the best of
our knowledge, this paper is the first consideration of zigzag
for sea state estimation. Being different from the DP system,
which is installed only in some ships, zigzag is an element of
the basic maneuverability of modern ships. Thus, the use of
motion data of zigzag is more common and the trained model
on this kind of motion data can be applied to more ships.
There are several challenges to estimating the sea state using
motion data of zigzag: First, it is necessary to select the proper
variables for sea state estimation. Second, the environmental
influence relative to the ship hull itself is changing even though
the external environment comes from a single direction. For
the DP vessels which are maintaining a fixed position, the
influence of wave is static, which makes it harder to learn
the environmental information purely based on the data of
zigzag motion than with DP motion. Third, the sensor data of
ship motion in different sea state might be very similar, which
makes it very hard to determine the sea state from current
motion data alone. Considering both wave height and direction
makes this even more difficult.

In order to be able to utilize the sensor data of ship motion
for sea state estimation in light of both wave height and
wave direction, it is necessary to extract fine-grained features.
The most common solution, which employs deep learning
techniques, is to use stacked convolutional neural networks
(CNNs) sequentially to produce hierarchical representations.
The convolutional operation can be viewed in order to ex-
tract features over the time series sequence [9]. However,
conventional connections alone cannot deal with sea states
properly. Inspired by [10], we propose a densely connected
CNN (SSENET) with two attention mechanisms for sea state
estimation. Through the dense connections, the SSENET can
fully make use of all the hierarchical features from original
time series sensor data and all the features extracted by all
convolutional blocks. The channel attention mechanism is
adopted to enhance the features extracted by each convolu-
tional block [11]. To fuse and select task-friendly features, an
feature attention module is designed before the classification
layer. The two characteristics enable the proposed network
to obtain competitive results on benchmark datasets and ship
motion datasets.

In summary, the contributions of this paper include:
1) A new deep neural network (SSENET) is proposed that

is equipped with dense connections between convolutional
blocks and with two feature attention mechanisms. Through
these two design considerations, the network is able to select
hierarchical features for sea state estimation that reflect both
wave height and wave direction adaptively using the measure-
ment of zigzag motion.

2) The network is extensively evaluated on 12 benchmark
datasets and two ship motion datasets. The network obtains
competitive performance compared with state-of-the-art base-
line models and other attention mechanisms on these datasets.

The rest of this paper is organized as follows. Section
II is a brief review of previous work, mainly including the
introduction of sea state estimation and time series classifica-
tion. Section III introduces the architecture of the proposed
model. The proposed method is examined on both benchmark
data sets and ship motion data sets in Section IV. Section V
presents the conclusion and discussion.

II. RELATED WORK

A. Onboard Measurements Based Sea State Estimation
Sea state estimation based on ship motion data slowly

emerged from the 1970s [12]. Onboard measurements based
on sea state estimation usually falls into two categories:
model-based approaches and data-driven approaches. Model-
based approaches deduce the information of the sea state
by the combination of wave-induced measurements and a
mathematical model [6]. Most of the work on the model-
based approaches addresses the frequency domain and/or the
time domain. In the analysis of the frequency domain, the
response spectrum of ship motion is combined with response
amplitude operators (RAOs), Which reveals how waves are
transformed into ship response, so that the estimation of the
wave spectrum is given [5], [13], [14], [15], [16], [17]. Unlike
the analysis in frequency domain, the analysis of the time
domain is formulating the estimation of sea state directly in
the time domain. Pascoal and Soares [18] proposed a Kalman
filter-based method which relies on the accurate RAOs for the
estimation of wave height and wave direction in time domain
only. Nielsen et al. [19] also compute sea state directly in the
time domain based on measured response and corresponding
theory regarding both wave height and direction. As stated
in the literature, it is reasonable to expect this will provide a
good estimation of the sea state [20]. However, such estimates
depend on the reliability of the RAOs [6].

Data-driven approaches are employing machine learning or
deep learning techniques to extract temporal and frequency
features. Even though machine learning or deep learning
techniques have been widely used in other areas, they have
rarely been applied to sea state estimation. Tu et al. proposed
a multi-layer classifier for sea state estimation in terms of
wave height working on salient feature extracted from the
time domain and frequency domain of the motion data of DP
vessels [7]. Although this method does not rely on accurate
mathematical models, it requires a lot of human involvement.
To reduce the influence of artificial features, Cheng et al.
proposed a deep learning based end-to-end model for sea
state estimation using the DP motion data [3]. While data-
driven approaches have had good results, these approaches
have not considered wave direction. Moreover, past researches
have used the data of DP motion when the ship keeps a
certain location. The use of DP motion data for sea state
estimation is limited because ships are in motion most of the
time. Therefore, it is necessary to propose an approach that
accounts for ship motion.

B. Time Series Classification
In the literature, several algorithms have been developed

over the years for time series classification. Most include
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distance-based methods, feature-based methods, and deep-
learning-based methods. The distance-based methods have
proven successful in classifying multivariate time series
data [21]. The feature-based methods heavily depend on the
extracted features that represent the local or global patterns
of time series. Baydogan et al. proposed a bag-of-features
framework (TSBF) which can extract the interval features with
different time scales [22]. Schafer proposed the BOSS (Bag-
of-SFA-Symbols) model which combines symbolic fourier ap-
proximation (SFA) and word bag model [23], [24]. The hidden
state conditional random field and hidden unit logic model
are both successful feature-based methods, which produce
state of the art results when used on different benchmark
datasets [25]. Significant effort has been made to exploit
approaches based on deep learning as a way to overcome
the limitations of feature engineering. Zheng et al. proposed a
multi-channel model for multi-variate time series classification
[26]. Wang et al. proposed several baseline models for time
series classification, such as the Fully Convolutional Network
(FCN) and the Residual Neural Network (ResNet) [9]. Fazle
et al. proposed the LSTM-FCN, ALSTM-FCN, MLSTM-FCN,
AMLSTM-FCN models, which they combined with CNN and
RNN to establish an end-to-end model [27], [28]. Fawaz et al.
who provided an overview of most deep learning approaches
for time series classification found that the ResNet [9], which
adds an identity skip connection to bypass the nonlinear
transformations, obtains the best results regardless of the size
of the dataset [29].

III. DENSELY CONNECTED CONVOLUTIONAL NETWORKS
FOR SEA STATE ESTIMATION

A. New Concept of Sea State

TABLE I
CODE OF SEA STATE [30]

Sea State Description Wave height (m) World wide
probability (%)

0 Calm (glassy) 0 —
1 Calm (ripples) 0-0.1 11.2486
2 Smooth 0.1-0.5 —
3 Slight 0.5-1.25 31.6851
4 Moderate 1.25-2.5 40.1944
5 Rough 2.5-4.0 12.8005
6 Very rough 4.0-6.0 3.0253
7 High 6.0-9.0 0.9263
8 Very High 9.0-14.0 0.1190
9 Extreme > 14.0 0.0009

Sea state is the general condition of wave and wind on
the open sea at a certain location and moment [30]. Most
researches generally define the world-wide sea state by wave
height, as shown in TABLE I. Data-driven approaches often
label the sea state based on TABLE I [3], [7]. However, this
labeling approach ignores the information of wave direction.
This paper considers both wave height and direction for the
following reasons: First, in marine operations, heading waves
need to be used to reduce the sloshing caused by the waves. In
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Fig. 1. Definition of the wave direction in world coordinate.

order to make better use of heading waves, we need to know
the direction of the waves as much as possible to facilitate
decision making. Second, the wave height and direction are
two very important parameters for wave spectrum. Only wave
height is focused on by the previous data-driven studies. Thus,
this paper is the first attempt to estimate the wave direction
based on deep learning techniques in addition to the wave
height. As described in Fig. 1, the open sea is divided into
eight parts. And the first six sea states are used, as described
in TABLE I. The reason for using the six sea states is that
the sum of the first six sea states is almost 96%. The first two
sea states are very similar, and hence, are merged. Therefore,
there are 5 wave heights coming from 8 directions, that is, 40
different new sea states are created for the new concept of the
sea state.

Here, the motion data of zigzag will be used for sea state
estimation. It is easy to estimate wave height alone. However,
estimating both wave height and direction simultaneously
is difficult. To illustrate this problems, we take one of the
onboard measurements to explain why the estimation of both
wave height and direction is challenging, as shown in Fig. 2
and Fig. 3. Fig. 2 shows the changes of heave velocity in five
different wave heights, while Fig. 3 represents the variations
under the same wave heights (Hs=0.1m) but in different wave
directions in zigzag motion. As these two figures show, it is
easy to observe the distinctive feature when considering weave
height alone. However, when the wave direction is significantly
different and the wave height is the same, phase shifts are
small. In particular, the phase shift is smaller when the wave
direction is almost the same. Thus, the designed network
should be equipped with powerful capability to represent fine-
grained features.

B. Network Structure

Inspired by the powerful capability of feature extraction of
ResNet, we think it is possible to improve the performance of
ResNet by adopting the idea of dense CNN [10]. The proposed
network is mainly used for sea state estimation (which is
why it is named SSENET), which takes advantage of the
structure of ResNet in time series classification and ensures
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Fig. 2. Heave velocity in different wave height.
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maximum information flow between layers. The proposed
SSENET consists of four parts that are depicted in Fig. 4: data
processing, convolutional blocks and dense connections, chan-
nel attention, and feature attention. For the sake of simplicity,
we only show three convolutional blocks. The model begins
with the processed ship motion data and generates hierarchical
features by convolution blocks and through dense connections
(denoted by the colored lines). The dense connections enable
SSENET to form hierarchical features flexibly, because each
block receives additional input from all preceding blocks and
passes its own feature maps to all subsequent blocks. To
select task-friendly features, two attention mechanisms are
presented to re-weigh these hierarchical feature maps. A final
representation is then built for sea state classification.

C. Data Processing

With the development of vessels, all kinds of onboard mea-
surements could be collected. In this paper, we only consider
the onboard 9-DOF (degree-of-freedom) measurements (surge
velocity, sway velocity, heave velocity, roll angle, roll velocity,
pitch angle, pitch velocity, yaw angle, and yaw velocity),
which can be obtained from the inertial measurement unit
(IMU), as initial input. The data processing mainly focus on
data cleaning, phase correction, and feature selection. It is
necessary to clean the noise and redundant information to
minimize its effect on further analysis and modeling [31]. To
get rid of the noise, median filtering methods are employed
in this paper. For the roll angel, yaw angel, and pitch angle,
the physical definition creates some jumping phenomena. The
algorithm developed in our previous paper is utilized [31].
A mutual information [32] based feature selection method is
employed to select the most influential sensor data to sea state.

D. Convolutional Block and Dense Connection

The convolutional block consists of three basic 1D CNNs
and three channel attention blocks, as depicted by C-Attention
in Fig. 4. The activation function is the ReLU [33] for each
basic 1D CNN, and the feature extracted by CNN will be
processed by a batch normalization (BN) [34] layer. The
convolution operation is done by the kernel with the preset
size.

The 1D CNN operation is:

s =W ⊗X + b

s = BN(s)

s = ReLU(s)

(1)

where X represents the input, W and b stand for the trainable
weights and bias respectively, and ⊗ is convolution operator.
After 1D CNN operation, the feature maps are enhanced by
channel attention. Assuming the function of channel attention
module is Cl(·), the output can be represented by y = Cl(s).
The final convolutional block is built by stacking three 1D
CNNs and channel attention modules with the preset filter
sizes.

Each block can receive the feature maps from all preceding
blocks:

Xl = Fl(W, [x0, x1, ..., xl−1]) (2)

where [x0, x1, ..., xl−1] is the concatenation of the feature
extracted in blocks 0, ..., l − 1. W is the learnable parameter.
Fl(·) is the composite function of each block.

E. Channel Attention Module

Channel attention, which is defined in [11], is utilized to
exploit the latent relationship of features in channels. The
design of this module is focusing on the meaningful part of
a given input image. We adopt the idea of channel attention
for time series classification. There are two channel features,
Cavg and Cmax, which utilize global average pooling and
global max pooling, respectively. As described in [11], both
Cavg and Cmax can gather more vital information than each
of them separately. It is better to use both of them to infer
channel-wise features. Both features are forwarded to a shared
one hidden layer multilayer perceptron (MLP) to produce
the feature map. After the shared MLP, the feature vector is
obtained by the element summation. Finally, the final weighted
input can be computed using the sigmoid transformation. The
whole process for channel attention module is shown in Fig.
5.

In short, the weights of channel attention and weighted
inputs are computed as:

αCatt
= Sigmoid(MLP(Cavg) + MLP(Cmax))

Xweighted = αCatt
⊗ X.

(3)

where X is the original input, ⊗ means the element-wise
multiply, and Cavg and Cmax share the weights of MLP. The
re-weighted features will be sent to the next and all subsequent
1D CNNs.
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Fig. 4. Illustration of the proposed SSENET.
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F. Feature Attention Module

Through dense connections, the downstream layers of the
network can access the features generated by the upstream
layer. However, how to utilize these features (some are redun-
dant) effectively remains a key issue. Therefore, we propose
a feature attention mechanism to effectively make use of
these features for classification. The feature attention module
includes two operations: feature ensemble and feature weight,
which is depicted in Fig. 6. It is noteworthy that those parts
except feature ensemble are called feature weight. The feature
ensemble is designed to recombine the features from different
convolutional blocks. These new features are employed as the
input to generate attention weights to re-weight the features
adaptively. The whole processing will be realized during the
training processing.

Assuming that the feature from different convolutional
blocks are X1,X2, · · ·,XL, the new feature can be represented
as Xensemble = [X1;X2; · · ·;XL].

The attention weight α and the weighted inputs can be
computed as follows:

α = softmax(MLP(Xensemble))

Xweighted = α⊗Xensemble.
(4)

After the attention calculation, the weighted input will be
fed into a softmax classification layer that corresponds to 40
sea states.

IV. EXPERIMENT

All experiments were performed on a server equipped with
an Intel Xeon processor, 128 GB RAM and Nvidia Tesla
K80 and 24 GB RAM. The software environment used is
Anaconda1 Python 3.6, and all the layers are implemented
by Keras 22, using TensorFlow3 as the backend.

A. Dataset

• Benchmark data set: The proposed SSENET is evalu-
ated on 12 public datasets which are used for multivariate
time series classification [28]. The detailed information of
the 12 public datasets are shown in TABLE II. These
datasets contain several domains, and the number of
classes and the number of variables differ greatly. More-
over, these datasets have been pre-processed and split in
training and testing datasets. Instead of re-running other
methods on these datasets, we just duplicated the results
from four state-of-the-art methods [27], [28] reported by
their respective authors in their publications to ensure a
fair comparison.

TABLE II
INFORMATION OF BENCHMARK DATASETS

Datasets Classes Variables Length Domain Train/Test

AREM 7 7 480 Activity
Recognition 50%/50%

HAR 6 9 128 Activity
Recognition 71%/29%

Daily Sport 19 45 125 Activity
Recognition 50%/50%

Gesture
Phase 5 18 214 Gesture

Recognition 50%/50%

EEG 2 13 117 EEG
Recognition 50%/50%

EEG2 2 64 256 EEG
Recognition 20%/80%

HT Sensor 2 11 5396 Food
Recognition 50%/50%

Movement
AAL 2 4 119 Movement

Recognition 50%/50%

Occupancy 2 5 3758 Occupancy
Recognition 35%/65%

Ozone 2 72 291 Weather
Recognition 50%/50%

Action 3d 20 570 100 Activity
Recognition 50%/50%

Activity 16 570 337 Activity
Recognition 50%/50%

1https://anaconda.org/
2https://keras.io
3https://www.tensorflow.org/
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• Ship motion data set: Two datasets of zigzag motion are
collected from the digital ship of NTNU’s research vessel,
R/V Gunnerus [35]. The reasons to collect two data sets
are to eliminate the influence of the specific dataset and to
study the performance of SSENET in different datasets.
The difference of simulation setting for the two datasets
comes from the wave directions and peak-to-peak period.
The first data set, with peak-to-peak period 10s, contains
the following wave directions: 30◦, 60◦, 120◦, 150◦,
210◦, 250◦, 300◦, and 330◦. The second one , with peak-
to-peak period 15s, includes: 20◦, 50◦, 110◦, 160◦, 200◦,
240◦, 280◦, and 350◦. It is also noteworthy that the same
zigzag command would be executed in the 40 sea states.
The two datasets are split by 80%-20% for training and
testing.

B. Benchmark Comparison

To illustrate the feasibility of our proposed model, we first
compare our model with the state-of-art methods. In these
tests, the number of convolutional blocks is set to 2. In this
paper, we adopt the idea of setting the number of filters in
FCN [27]. Those hyper-parameters also can be optimized by
the parameter tuning algorithms [36]. The numbers of filters
in the first block are 128, 256, and 128, while the numbers of
filters in the second block are 256, 512, and 256. The kernel
sizes in the two blocks are 8, 5, and 3. All the networks in
this section are trained in two steps. They are trained initially
using the Adam optimizer [37]. The initial and final learning
rate are set to 1e-3 and 1e-4, respectively. And the learning
rate changes every 50 epochs using a factor of 1

3√2
. The mini-

batch is set to 128 in the first step training. The second step
is to perform fine-tuning of the network trained in the first
step on the whole original data set. The fine-tuning process is
repeated 5 times. The mini-batch and learning rate are firstly
set to 32 and 1e-3, and then reduced by half at the end of each
iteration.

To verify the performance of the proposed model and the
training algorithm, the testing results of the proposed model
with and without fine-tuning are provided, as shown in Table
III. From the results without fine-tuning, it is observed that
there is 3.01% improvement on EEG2, 2.76% on Gesture
Phase, 0.17% on HAR, 4.9% on Occupancy, and 14.83% on
Action 3d. It is interesting that our model can achieve better
results on datasets which consist of a testing set bigger than
the training set. This means that our model can extract more
features with the help of its deep and flexible architecture.
From the results with fine-tuning, SSENET achieves the
highest average accuracy and wins on most of the benchmark
datasets. Our network is able to achieve good results on most
datasets. Specifically, our network obtained almost 14.82%
improvement in Action 3d, 7% in EEG2, and 5.1% in AREM.
Compared the result with and without model fine-tuning, the
fine-tune is very helpful on some datasets, such as AREM
with 7.9% improvement, EEG with 11.9%, EEG2 with 4.2%,
Gesture Phase with 0.92%, HAR with 0.84%, HT Sensor with
9.5%, Ozone with 4.8%, and Action 3d with 1.87%. The
other datasets got the same result whether the fine-tuning is

Fig. 7. Results of mutual information.

performed or not. From the benchmark tests we also can know
that the SSENET can be applied to several tasks in different
domains.

C. Data Analysis and Feature Selection

In the literature, only a few parameters would be used for
sea state estimation both in model-based methods and model-
free methods. In [7], surge velocity, sway velocity, roll angle
and yaw angle are selected. In [4], [5], heave velocity, roll,
and pitch angle are chosen. In [20], heave velocity, pitch
angle, roll angle, and sway velocity are utilized. While in
[16], sway velocity, heave velocity, pitch angle and yaw angle
are employed. In conventional model-based methods, these
variables are selected because they are wave-induced responses
which can inferred from the mathematical models. In this
paper, we use a mutual information based variable selection
method to explain why these variables are important from a
data perspective. The input parameters are the 9-DOF onboard
measurements, and the 40 classes are the output. From Fig. 7,
we can know obviously that the heave velocity, pitch angle,
pitch velocity, and yaw angle are the first four most important
variables to sea state. In order to keep the same number
of variables with other sea state methods, four variables are
chosen as the input of our proposed model SSENET.

D. Baseline Comparison

We compare our model with six baselines as follows:
• MLP: Three stacked fully-connected layers are used in

MLP, with 500 neurons in each layer and the ReLU
used as the activation function. The dropout layer with
dropping rate of 0.8 is utilized between layers [38].

• CNN: Two 1D convolutional layers are employed with
the sigmoid activation function and average pooling
is used between layers. We choose the best net-
work for comparison from four different sets of filters
{64, 128, 256, 512}.

• FCN: The FCN has the same settings as in MLSTM-FCN
[28].

• MLSTM-FCN: The same settings as for MLSTM-FCN
are adopted from [28].

• LSTM: Five different LSTMs are trained with different
numbers of hidden units {8, 16, 32, 64, 128}.
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TABLE III
ACCURACY COMPARISON WITH THE STATE-OF-ART TIME SERIES CLASSIFICATION METHODS (%)

Datasets LSTM-FCN[27] MLSTM-FCN[28] ALSTM-FCN[27] MALSTM-FCN[28] Other methods [28] SSENET SSENET(FT)∗
AREM 89.74 92.31 82.05 92.31 76.92 [DTW] 89.74 97.44
Daily Sport 99.65 99.65 99.63 99.72 98.42 [DTW] 99.61 99.61
EEG 60.94 65.63 64.06 64.07 62.5 [RF] 57.81 65.63
EEG2 90.67 91 90.67 91.33 77.5 [RF] 94.17 98.33
Gesture Phase 50.51 53.53 52.53 53.05 40.91 [DTW] 55.05 55.56
HAR 96 96.71 95.49 96.71 81.57 [RF] 96.87 97.69
HT Sensor 68 78 72 80 72 [DTW] 76 84
Movement AAL 73.25 79.63 70.06 78.34 65.61 [SVM-Poly] 77.71 77.71
Occupancy 71.05 76.31 71.05 72.37 67.11 [DTW] 80.26 80.26
Ozone 67.63 81.5 79.19 79.78 75.14 [DTW] 79.77 83.82
Action 3d 71.72 75.42 72.73 74.74 70.71 [DTW] 88.55 90.24
Activity 53.13 61.88 55.63 58.75 66.25 [DTW] 65.00 65.63
Accuracy 74.36 79.30 75.42 78.43 71.22 80.05 82.99
No. of wins 0 2 0 1 1 1 9
Ranking 5 2 4 3 — — 1

* FT means the models have been fine-tuned.

• ResNet: We use the same settings as in ResNet from [29].
• SeaStateNet: SeaStateNet is specifically designed for sea

state estimation [3]. SeaStateNet is composed of three
parallel parts: LSTM part, CNN part, and FFT part.

In this section, the hyper-parameters of SSENET are the
same as in Section IV-B, but it is trained without fine-tuning.
The settings of hyper-parameters and training algorithm for
SSENET for all the following experiments are the same as in
this section, and will not be further elaborated. The proposed
SSENET is compared with the baseline methods on the two
ship motion datasets. To fully test our model, we present
the best performance of each method in TABLE IV. Among
these methods, CNN, FCN, ResNet, and SSENET are pure
convolutional neural networks. LSTM-FCN and SeaStateNet
belong to different combinations of neural networks. LSTM-
FCN consists of two parts: LSTM and FCN which work
parallelly, and SeaStateNet is composed of three parts: LSTM
part, CNN part, and FFT part, which also work parallelly. In
term of accuracy, our proposed network clearly outperforms all
the baseline methods on both datasets. The worst performance
occurs in MLP, and the performance of LSTM is relatively
better with the capability of learning the periodic features.
SSENET shows 10.50% and 9.67% improvement compared
to the SeaStateNet on dataset 1 and dataset 2, and 19.4%
and 15.7% improvement compared to the MLSTM-FCN on
both datasets. From the results, we can also see that the
SeaStateNet is better than MLSTM-FCN. The reason might be
that the SeaStateNet has one more FFT part which can extract
features in the frequency domain. For these pure convolution
neural network, ResNet performs better than CNN and FCN,
which reveals the advantage of its complex structure to extract
features from this kind of ship motion data. Compared to
ResNet, the SSENET shows 12.85% and 13.37% improvement
on the dataset 1 and dataset 2. The reasonable explanation
could be that the proposed SSENET is based on the ResNet
with additional dense connection and attention modules, which
can improve the performance significantly.

TABLE IV
ACCURACY COMPARISON WITH BASELINES ON SHIP MOTION DATA

Methods Type dataset 1 dataset 2 average
MLP [38] Simple NN 75% 77.12% 76.06%
LSTM Simple NN 75% 79.81% 77.41%
CNN Pure CNN 75.58% 78.65% 77.12%
FCN [28] Pure CNN 75.38% 81.35% 78.37%
ResNet [29] Pure CNN 78.27% 80.96% 79.62%
MLSTM-FCN [28] Combined NN 75.19% 80.77% 77.98%
SeaStateNet [3] Combined NN 80.38% 84.42% 82.40%
SSENET Pure CNN 89.81% 93.46% 91.64%

E. Ablation Study

To conduct the ablation study, four variants are compared.

• SSENET-Attention: The two attentions mechanisms: C-
Attention and F-Attention as shown in Fig.4 are removed.

• SSENET-C-Attention: There is no C-Attention in
SSENET.

• SSENET-F-Attention: To validate the F-Attention mech-
anism, we remove it from SSENET directly.

• SSENET-Connection: This variant is constructed using
the stacked convolutional blocks, that is, the variant does
not consider the dense connections.

Each variant was tested on the two data sets. To present
an equal measurement, we present the best performance of
the four variants. From TABLE V, we observe that: 1) The
biggest accuracy drop happens when there are no attention
modules. 2) In terms of average accuracy, the accuracy drops
by 4.33% when the C-Attention module is removed. However,
the accuracy only drops by 2.31% when there is no F-Attention
module. This means the C-Attention module is more important
than the F-Attention module. 3) The full combination of the
two attention modules show superiority against the variants
SSENET-Attention (without attention modules), SSENET-C-
Attention (C-Attention is removed) and SSENET-F-Attention
(F-Attention is removed) , which demonstrates the importance
of the proposed two attention mechanisms.

To illustrate the importance of dense connections, we further
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compare the network with and without the dense connections.
As we can see from TABLE V, the accuracy drops by 1.93%
and 2.88% in dataset 1 and dataset 2, respectively. In terms
of average accuracy, the accuracy drops by 2.41%. From the
results, the dense connection can improve the accuracy by
considering the fusion of hierarchical features. Furthermore,
despite of the usage of dense connection, the computational
cost doesn’t increase significantly.

TABLE V
ABLATION STUDY

Methods dataset 1 dataset 2 average
SSENET-Attention 81.92% 86.15% 84.04%
SSENET-C-Attention 85.77% 88.85% 87.31%
SSENET-F-Attention 87.88% 90.77% 89.33%
SSENET-Connection 87.88% 90.58% 89.23%
SSENET 89.81% 93.46% 91.64%

F. Comparison with Other Attention Mechanisms

TABLE VI
COMPARISON STUDY OF ATTENTION MODULES

Methods dataset 1 dataset 2 average
CBAM [11] 81.92% 82.69% 82.31%
Global text [39] 85.77% 81.92% 83.85%
SE [40] 87.88% 83.27% 85.58%
SSENET 89.81% 93.46% 91.64%

To further verify the importance of the proposed attention
mechanisms, the proposed network is compared with three
attention mechanisms. As is shown in Fig. 4, the number
pertaining to the C-Attention module is much greater than that
pertaining to the F-Attention module. The C-Attention module
is replaced by one attention module at each comparison.
From TABLE VI, we observe that the SE obtained the best
performance. It is noteworthy that the C-Attention module is
one part of CBAM. The CBAM is applying the C-Attention
module and the spatial attention module sequentially so that
it can learn where to focus and on what in the channel and
spatial axes [11]. While this paper only considers the idea of
channel attention, it is interesting that CBAM is not as good as
C-Attention, even though it is better than C-Attention in the
original paper for computer vision applications. The reason
may be that CBAM is good at extracting more influential
features in the 3D image data than in 2D time series data.
In the practice of SE, only the average-pooled features are
exploited, missing the importance of max-pooled features
which is verified by the experiment results.

G. Sensitivity Analysis of Network Structure

The sensitivity analysis of the network structure focuses on
the influence of the number of convolutional blocks, and the
number of 1D CNNs in each convolutional block. To study
the influence of the number of convolutional blocks, three
different networks are created. The first network contains one
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Fig. 9. Influence of the number of 1D CNNs in each convolutional blocks.

convolutional block as shown in Fig. 4, with the filter numbers
{128, 256, 128}. The second network has two convolution
blocks which is tested in previous experiments. The third
network includes three convolutional blocks with the number
of filters {128, 256, 128, 256, 512, 256, 128, 256, 128}. These
networks are compared using three datasets: dataset 1 and
dataset 2 as described above, and a third dataset that combines
dataset 1 and dataset 2. The using of the third dataset makes
it possible to train more parameters as the depth of the
networks increases. We trained all the networks several times,
and the networks with the best performance are chosen for
comparison. Fig.8 represents the influence of the number of
convolutional blocks. As we expect, the network just with
one convolutional block has the worst performance, and the
network containing two convolutional blocks obtains the best
accuracy in the three data sets. Another finding is that the
accuracy of the three networks in the dataset 1 and dataset 2
is consistent with the previous experiment. However, higher
accuracy is obtained in the combination of the two data sets.
The explanation is that the bigger data set can provide more
information resulting in better accuracy.

To investigate the influence of the number of 1D CNNs in
each convolutional block, four networks are established with
one to four 1D CNNs, respectively. In this comparison, the
number of convolutional block is set to 2. The corresponding
settings for the numbers of filters in each 1D CNN are:
{128}, {128, 256}, {128, 256, 128}, and {128, 256, 256, 128}.
The other settings for hyper-parameters are the same as shown
in Section IV-B. Those networks are also tested on the three
datasets as mentioned above. Fig. 9 describes the influence
of the numbers of 1D CNNs in each convolutional block.
The left panel shows the validation accuracy in the three data
sets, and the right panel represents the training time of the
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four networks in the three data sets. It is obvious that the
highest accuracy happens when there are three 1D CNNs,
and the accuracy is almost the same when there are two
and four 1D CNNs. Additionally, the training time increase
significantly when there are four 1D CNNs. According to the
above experiments, the best choice is to select three 1D CNNs
considering both accuracy and consumed time.

V. DISCUSSION AND CONCLUSION

This paper introduces a new deep neural network to estimate
sea state based on ship motion data of zigzag considering both
wave height and direction. The network is built on the basis of
stacked CNN blocks with dense connections between different
blocks, channel attention modules and a feature attention
module. The dense connections build short-cut paths between
input and all subsequent convolutional blocks. The channel
attention module aims to enhance the features extracted by
each convolution block. The feature attention module focuses
on the feature fusion of hierarchical features jointly and
adaptively.

There are some interesting findings in this paper. One is that
the proposed SSENET achieved different accuracy in dataset
1 and dataset 2, even though there is not very much difference
between the two datasets. The reason why this occurred is that
the distribution of the training set and the test set differs to
somewhat when the two are split randomly from the original
one. Superficially, the proposed SSENET is quite similar
to ResNet. However, SSENET has concatenation instead of
summation. From the experimental results, the seemingly
small modification has resulted in different behaviors of the
two networks. Thanks to the input concatenation, the feature
extracted by any layers of SSENET can be accessible to by
all subsequent layers. In this design, the features can be fully
reused throughout the network and lead to a more network.
Another possible explanation for the improved accuracy of the
proposed SSENET is that the two attention modules may have
enhanced the extracted features. However, the ablation study
shows that it is still not easy to identify which attention module
is more important, even though there are more accuracy drops
when the channel attention module is removed. The reason
is that there are more channel attention modules than feature
modules.

Future research will employ more tests to determine the
importance of each part of SSENET. Furthermore, the hyper-
parameters should be optimized to find the best network
structure. The third and most important point is that we need
to integrate SSENET into a ship motion monitoring system to
serve an autonomous ship.
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