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Abstract— Developing a reliable model to identify the sea
state is significant for the autonomous ship. This paper in-
troduces a novel deep neural network model (SeaStateNet) to
estimate the sea state based on the ship motion data from
dynamically positioned vessels. The SeaStateNet mainly consists
of three components: an Long-Short-Term Memory (LSTM)
recurrent neural network to capture the long dependency in
the ship motion data; a convolutional neural network (CNN) to
extract time-invariant features; and a Fast Fourier Transform
(FFT) block to extract frequency features. A feature fusion layer
is designed to learn the degree affected by each component. The
proposed model is applied directly to the raw time series data,
without needing of any hand-engineered features. A sensitivity
analysis (SA) method is applied to assess the influence of data
preprocessing. Through benchmark test and experiment on ship
motion dataset, SeaStateNet is verified effective for sea state
estimation. The investigation on real-time test further shows
the practicality of the proposed model.

I. INTRODUCTION

As the complex marine operations have been moving to-
wards the ultra-deep sea, the demanding of new technologies
and equipment is increasing to make the operations more
safe for the harsh environment [1]. The working window
of vessels is weather-dependent, which requires adequate
understanding of the weather condition to reduce cost and
improve safety [2]. Recently, there is a trend to consider
developing more advanced vessels that have intelligence and
are capable of executing different levels of autonomy for
maritime operations. Developing a real-time and reliable
model to estimate the sea state is significant to aid the
decision making for the autonomous ship.

Traditional instruments such as wave buoys, X-band radars
and remote sensing satellites can estimate the sea state to
some extent, but have their own limitations. The wave buoys
can work close to the shore, but need to be placed for
every measurement, and it is hard to apply it to predict
the sea state in the open sea. The X-band radars need to
be calibrated frequently, and the cost of installation and
use is high. The remote sensing satellites is easily affected
by the cloud, and the weather information just lags up to
several hours, in general. Nowadays, many researchers have
conducted extensive explorations on the identification of sea
state based on the ship motion data directly [3], [4]. A
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ship can be considered as a big wave buoy, thus, inherently
equipped with a sea state estimation system [2].

The use of external sensors (wave buoys, etc.) or the ship’s
own motion data to identify sea states usually involves the
analysis in the time domain or in the frequency domain
[5]. The idea of sea state estimation in time domain is
updating the sea state from the ship motion measurement.
While the estimation of sea state in frequency domain would
usually combine the response spectrum with the response
amplitude operators (RAOs). The drawback of those method
is that both methods highly rely on mathematical models
or assumptions in either time domain or frequency domain,
and the recent collected data may easily lead to incorrect
identification due to the randomness of the environmental
factors. To address the problem of conventional methods,
other researchers turned their attention to machine learning,
using ship motion data and feature engineering techniques
to extract temporal and frequency domain features from the
data. For example, in [6], the sea state was estimated by a
multi-layer random forest (RF) classifier. The method does
not rely on accurate mathematical models, but requires many
hand-crafted features that play a very important role in the
classification results.

To the best of our knowledge, even though deep learning
(DL) based classification have been hot topic in recent years,
the study on exploring DL in sea state estimation is seldom
seen. Applying the DL to the sea state estimation based on
a DP ship’s motion data has several challenges: 1) the DP
ship motion data contains the information of the external
environmental factors and the control forces from the thruster
system. Thus, it is not easy to learn the environmental
information purely based on the data. 2) Changeable weather
in the open sea brings a lot of transitions of sea state. The
uncertainty of sea state transition brings difficulties to the
estimation of sea state. 3) The status of DP ship in different
sea state could be very similar, which makes it very hard
to determine the sea state if just focusing on current motion
data. 4) The sensor data contains measurement-induced noise
and uncertainties, which brings difficulties to modeling.

To address the above challenges, a novel end-to-end deep
neural network called SeaStateNet is proposed to accurately
classify the sea state based on ship motion data. The SeaSt-
ateNet directly utilizes the raw sensor data for modeling, in
which a SA method is employed to assess and calibrate the
influence of data processing to the classification results. We
have made the following main contributions in this work.
• An end-to-end DL network (SeaStateNet) is designed,

combining LSTM, CNN, FFT with feature fusion is



proposed for sea state estimation.
• The proposed model is evaluated on the publicly bench-

mark datasets, and ship motion dataset from a commer-
cial simulator, together with real-time use of the model
in the simulator.

The paper is organized as follows: an introduction to sea
state estimation and time series classification technologies is
given in Section II. Section III presents the design of net-
work. The experiments are discussed in Section IV. Section
V concludes the paper.

II. RELATED WORK

A. Sea State Estimation

Sea state is defined as a general condition in a certain
location and moment, which is characterized by the wave
and wind. Table I describes the sea code which is proposed
to define the sea state quantifiably. Most of the research for
sea state estimation recently is combining the wave-induced
response measurements, which are collected by wave buoys
or directly from the ship motion, and a mathematical model.
The previous work focused on the field of frequency domain
analysis where the wave (energy) spectrum would be given
[7], [8], [9], [10], [11], [2]. Pascoal and Soares [12] proposed
a Kalman filtering based method which relies on the accurate
RAOs in time domain only. Nielsen et al. [13] also calculated
the sea state directly in time domain on the basis of the
measured response and corresponding theory. It should be
mentioned that all the above methods ship dependent, which
means their methods can only be used for these specific
vessels. Nevertheless, from [6], if the model depends only on
ship motion data, it could be applicable to all types of vessels.
In essence, ship motion data is time series data, and contains
several frequencies which can describe the characteristics
of environment. Thus, it is promising to establish a deep
learning model to identify the sea state which can extract
information from the time and frequency domain, and doesn’t
need to rely on hand-craft features.

TABLE I: Code of sea state [14]

Sea State
Code

Description
of sea

Wave height
observed (m)

World wide
probability (%)

0 Calm (glassy) 0 -
1 Calm (ripples) 0-0.1 11.2486
2 Smooth 0.1-0.5 -
3 Slight 0.5-1.25 31.6851
4 Moderate 1.25-2.5 40.1944
5 Rough 2.5-4.0 12.8005
6 Very rough 4.0-6.0 3.0253
7 High 6.0-9.0 0.9263
8 Very High 9.0-14.0 0.1190
9 Extreme Over 14.0 0.0009

B. Time Series Classification

The algorithm of time series classification have been
developed over years. The distance-based methods for time
series classification have been the first successful algorithm

[15]. Feature-based algorithms also are widely used. Gen-
eralized Random Shapelet Forests (gRSF) [16], and Hid-
den Unit Logistic Model (HULM) [17] are two successful
feature-based algorithms that have obtained the state-of-the-
art results on various benchmark datasets. Some approaches
also employ the dimensionality reduction techniques for time
series classification. Learned Pattern Similarity (LPS) [18]
can be used to extract information from the multivariate
time series to train a regression tree to find underlying
dependencies. A hybrid multivariate time series classifi-
cation method, named as WEASEL+MUSE, proposed by
Schäfer, and Leser [19], adopts the idea of bag-of-pattern
approach and achieved high competitive accuracies. Deep
learning has also been applied to the multivariate time series
classification. Zheng et al. proposed a multi-channel deep
convolutional neural network (MCDCNN) [20] to utilize
the features learned from different channels for multivariate
time series classification. An end-to-end LSTM-FCNs model
employ the parallel LSTM and FCN to extract the feature,
and achieved state-of-the-art results on various benchmark
datasets [21]. In summary, it is a good choice to make use of
the advantage of deep learning and combine with the inherent
characteristics of ship motion for sea state estimation.

III. PROPOSED APPROACH

A. Structure

A considerable amount of sensor data can be gathered
during DP operation. How to utilize these data to establish
model for sea state estimation has the following challenges:
1) the sensor data to be applied are usually too large and
high dimensional, and there are many uncertainties in these
data which are influenced by various factors, such as weather
conditions and human factors; 2) sensor data is collected in
time order, increasing the difficulty of obtaining the dynam-
ics of the underlying process; 3) How to properly process
the raw data not only improve the estimation accuracy of
the model but also find a reasonable estimation interval to
cope with environmental changes is challenging.

To address the above challenges, a structure is proposed, as
shown in Fig. 1. To capture more information of time series
data, the proposed model is to combine LSTM block, CNN
block, and FFT block to utilize their representation abilities
on different aspects of data. To characterize and reduce that
uncertainty and find the reasonable estimation interval in the
sensor data, SA would be utilized [22]. Technically, LSTM
block is training over the sequence of the sensor data to
capture the dependency in historical sensor data. The CNN
block is utilized to extract features from the sets of local
data. In order to make use of the prior knowledge in the
field of sea state, FFT block is also used to help to learn the
feature in frequency domain. Then, the feature fusion layer
merges the features for classifying the sea state. Finally, the
sea state classification is realized by the MLP. It is worth
noting that the the three parallel parts consist of H stacked
layers and H can be different for each layer. As illustrated
in Fig. 1, H1 and H2 stand for the first layer and the second
layer in each block.
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Fig. 1: Illustration of the proposed Structure.

B. Data Preprocessing

Time series is defined as a vector X =
{x(1),x(2), ...,x(t), ...,x(T )}, where T is the length of
time series, and each element x(t) contains M values, e.g.
x(t) = {x(t)1 ,x(t)2 , ...,x(t)M }, representing M number of sensors.

The task of time series classification is to estimate the label
Y = {1,2, ...,C}, and the time series model can be expressed
as: y = f (X), y ∈ Y , which can be learned from the data.
Since the LSTM usually fails to capture the very long-term
correlation [23], the long raw time series should be truncated
into small segments. As seen from Fig. 1, the length of each
segment is N. In practical applications, there is no guarantee
that each small segment will have the same length. Therefore,
when the length is less than N, the sequence is padded with
zeros.

C. Sensitivity Analysis

In this paper, we consider that several factors that influence
the performance of the proposed model: First, how to select
the input parameters that are most relevant to the output
for model construction; Second, there are many hyper-
parameters that need to be calibrated. Third, how to process
the raw time series data also would affect the model outputs.

In this paper, the mutual information (MI) based SA is
employed to select those influential sensor data [24]. The
MI based SA is a data-based approach, which is efficient
and effective to use, for it can learn the dependence between
variables from the sensor data directly. In addition, empirical
SA methods [25], which are widely used in the analysis of
DL model, are used here to determine the impact of data
pre-processing. Details please see Section IV-E.

D. Learning the Temporal Dependency

During the training phase, each small segment in the long-
term time series data is fed into LSTM block. The k-th LSTM
unit consists of a memory cell Ck, which is composed of
four components: input gate, forget gate, output gate, and
cell state, that can store information for a long time by
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Fig. 2: Performance comparison of different variants.

updating the internal state. The output of this LSTM unit
can be expressed as: hk = Ok tanh(Ck).

Ok is calculated by

Ok = σ(WWW xo xk +WWW ho hk−1 +WWW co Ck +bo)

Ck = fk Ck−1 + ik tanh(WWW xc xk +WWW hchk−1 +bc)

fk = σ(WWW x f xk +WWW h f hk−1 +WWW c f Ck−1 +b f )

ik = σ(WWW xi xk +WWW hi hk−1 +WWW ci Ck−1 +bi)

(1)

where x is the input vector to the LSTM unit; i, f , and o
are activation vectors used, to control the forget gate, the
input gate, and the output gate; C represents the cell input
activation vector, respectively; and h is the cell output vector.
The function σ is the logistic sigmoid function, and WWW and b
represent weight matrices and bias associated with different
activation vectors of each equation. In this paper, the LSTM
block contains a dropout layer to avoid the over-fitting.

E. Learning the Local Features from Time Series Data

When the k-th data block is fed to LSTM, the corre-
sponding local raw time series data point is also input
to CNN block of SeaStateNet. CNN block consists of H
stacked layers of 1D convolutional units. In general, each
1D convolutional unit contains a convolutional layer that is
accompanied by batch normalization. After batch normaliza-
tion is the activation function of the rectified linear unit. Each
convolutional layer has a specified number of filters with a
specified filter size. Each filter on the layer scans the entire
data block to extract local features.

F. FFT Layer

Fig. 2a shows the spectrum of the roll of ship under
different sea states. The distinction between the amplitude of
different sea states is quite obvious. And there is frequency
offset for different sea states. This means that the use of
frequency domain information for the classification of sea
state has significant benefits.

The process of FFT is shown in Fig. 2b. The k-th data
segment with shape (N×M) would be split to M (N× 1)
matrices. Then, the FFT would be performed for each (N×
1) matrix. For the reason of FFT algorithm, the length of
(N× 1) matrix would reduced to N/2+ 1. The M (N/2+
1× 1) FFT matrices would be concatenated to one block.



1D convolution layer is utilized to capture the local features
from the frequency data. The setting of 1D convolution layer
is the same with the CNN block.

TABLE II: Accuracy comparison with the state-of-art time
series classification methods

DataSet DTW gRSF MLSTM
-FCN

WEASEL
+ MUSE SeaStateNet

ArabicDigits 0.908 0.975 1.000 0.992 0.994
AUSLAN 0.727 0.955 0.970 0.991 0.978

CharTrajectories 0.948 0.994 1.000 0.973 0.994
CMUsubject16 0.930 1.000 1.000 1.000 1.000

ECG 0.790 0.880 0.860 0.880 0.860
JapaneseVowels 0.962 0.8 1.000 0.976 0.995

KickvsPunch 0.600 1.000 1.000 1.000 1.000
Libras 0.888 0.911 0.970 0.894 0.981

NetFlow 0.976 0.914 0.950 0.938 0.933
UWave 0.916 0.929 0.980 0.916 0.980
Wafer 0.974 0.992 0.990 0.997 0.992

WalkvsRun 1.000 1.000 1.000 1.000 1.000
Robot Failure LP1 0.760 0.840 0.860 0.940 0.860
Robot Failure LP2 0.700 0.667 0.830 0.733 0.833
Robot Failure LP3 0.567 0.633 0.800 0.900 0.800
Robot Failure LP4 0.867 0.867 0.920 0.960 0.987
Robot Failure LP5 0.540 0.450 0.660 0.690 0.710

PenDigits 0.927 0.932 0.970 0.912 0.967
Shapes 1.000 1.000 1.000 1.000 1.000

DigitShapes 0.938 1.000 1.000 1.000 1.000
Avg. accuracy 0.846 0.887 0.938 0.935 0.943

Wins/Ties 3 6 10 10 10

G. Feature Fusion Layer and MLP

The feature fusion layer combines the output representa-
tions from LSTM, CNN and FFT. Then, the joint feature
is fed to the MLP to provide the sea state classification.
Assume that these outputs can be represented by LSTM(X),
CNN(X), and FFT(X). Particularly, they would be mapped
to the same feature space and then add them together to
obtain the activation of the feature fusion layer. The three
components can be fused as follows:

X f usion =WWW r ·LST M(X)+WWW c ·CNN(X)+WWW f ·FFT (X)
(2)

where · is element-wise multiplication. WWW r,WWW c,WWW f are the
learnable parameters that adjust the degrees affected by
LSTM(X), CNN(X), and FFT(X), respectively. The output
layer, which uses Softmax as the activation function, is a
fully-connected layer following the feature fusion layer.

IV. EXPERIMENTS

All experiments were performed on a server equipped with
an Intel Xeon processor, 128 GB RAM and Nvidia Tesla
K80 and 24 GB RAM. The software environment used is
Anaconda1 Python 3.6, and all the layers are implemented
by Keras 22, using TensorFlow3 as the backend.

1https://anaconda.org/
2https://keras.io
3https://www.tensorflow.org/

A. Datasets

• Benchmark dataset: We evaluated our proposed model
SeaStateNet using 20 publicly available MTS datasets
collected in [21], [19]. SeaStateNet is compared to
five state-of-art time series classification methods, using
results reported by their respective authors in their
publications.

• Ship motion dataset: The ship motion data comes
from the Offshore Simulator Centre AS (OSC) [26].
According to Table I, the world wide probability of sea
state 0 - 5 occurring in the world accounts for almost
96%. Thus, we simulated the six sea states from sea
state 0 to sea state 5. Since the first two sea states are
very similar, they are merged to one state. In order to
reflect the complexity of the change of environment,
waves and winds are randomly generated no greater than
the range of sea state 5, and the transition also random
happens per [5, 30] minutes. In this experiment, the
ship motion data (roll, yaw, pitch, surge velocity, sway
velocity, heave velocity, roll velocity, pitch velocity and
yaw velocity) is used. we partition the data into non-
overlapped training, test data by 80% and 20%.

B. Comparison With the State-of-art Time Series Classifica-
tion Methods

To illustrate the feasibility of our proposed model, our
model is first compared with the state-of-art methods. In
these tests, the stacked layers H for LSTM, CNN, and FFT
block are set to {2,3,2}. The mini-batch size is set to 128,
and the number of units of LSTM is set to 8 and 8. The
number of filter of CNN block is 128, 256 and 128 with
kernel size 3, 5 and 3. The number of filter and kernel size
for FFT block are 128 and 5, respectively. Adam optimizer
[27], with an initial learning rate set to 1e-3 and the final
learning rate set to 1e-4, is employed to train all models. Each
benchmark dataset offers training and testing split which we
make use to compare to the prior publications. The window
size of each dataset of our method is the same as [21].

Table II summarizes the test results of the time series
classification method. From Table II, SeaStateNet achieved
highest average accuracy compared to the other approaches,
and has similar ranking (Wins/Ties) with WEASEL+MUSE
and MLSTM-FCN. Our model is able to achieve good results
on most data sets. In particular, on a few data sets, such
as LP4, LP5, our model achieved better results. The reason
behind may be that these data sets have more distinguishable
features in the frequency domain. Compared with MLSTM-
FCN, our model has one more FFT part. The next section will
show that the additional FFT layer can improve the accuracy
for sea state estimation.

C. Comparison with Baselines

We compared SeaStatNet with LSTM, CNN, and
MLSTM-FCN on the ship motion data set. The reason for
comparing these methods is that these methods belong to
the concept of end-to-end deep learning and does not rely
on data pre-processing. We did not use the WEASEL+MUSE
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Fig. 3: Performance comparison of different variants.

method mentioned in Section IV-B because the method
heavily depends on the hand-craft features. To evaluate the
performance of each model, those models are tested on
datasets with different window size N ranging from 200 to
1000. In this test, the number of hidden units of LSTM is
set to {8,16,32,64,128}, the number of filters of CNN is
set to {64,128,256,512}. The setting of MLSTM-FCN is
the same to [21]. The H of SeaStateNet is set to {1,2,2}.
The mini-batch size is set to 256, and the number of units of
LSTM is set to 8. The number of filter of CNN block is 128
and 256 with kernel size 3 and 5. The number of filter and
kernel size for FFT block are 128 and 5, respectively. To be
fair, we choose the best LSTM, CNN and MLSTM-FCN to
compared with our model.

Table III reports the classification accuracy of the four
models, evaluated on the testing set. As can be clearly
seen from the table, the performance of LSTM is the worst
compared to the other three methods. As the length of the
window increases, the over-fitting of the LSTM becomes
more serious. CNN is better than the LSTM (almost 11%
improvement). SeaStateNet achieved the best results on all
testing datasets. Compared with MLSTM-FCN, and with the
increase of window length, the accuracy of classification
increases gradually. The model structure proposed in this
paper uses one CNN layer less than MLSTM-FCN, but has
one more FFT layer. The reason for this is that the FFT block
can get more frequency domain information with the growth
of window size.

TABLE III: Accuracy comparison with baselines on ship
motion data.

Model /
Window size LSTM CNN MLSTM-FCN SeaStateNet

1000 0.7909 0.8917 0.9435 0.9667
800 0.8237 0.9011 0.9481 0.9589
600 0.8022 0.8923 0.9475 0.9521
400 0.7867 0.8710 0.9274 0.9447
200 0.8300 0.8662 0.9226 0.9323

Average 0.8067 0.8845 0.9378 0.9509

D. Variant Comparison

To further investigate the effectiveness of component in the
model, we compare SeaStateNet with its variants as follows:

• Sea NR: There is no LSTM in the SeaStateNet.
• Sea NC: To validate the effects of CNN block, we

remove it from SeaStateNet.
• Sea NF: This variant does not consider the effects of

FFT block.
• Sea Fusion: The feature fusion layer is removed from

SeaStateNet.
Each variant was tested based on the same ship motion

dataset, with N = 600 and N = 1000, respectively. The
settings of hyper-parameter of SeaStateNet is the same with
Section IV-C. The total epoch number is set to 600. The
experimental results are presented in Fig. 3. From the Fig.
3a, we observe that: 1) the full combination of the four
components shows superiority against Sea NR,Sea NC, and
Sea NF, which demonstrates the importance of the proposed
model. 2) The biggest accuracy drop happens when CNN
block is removed. This means the most important part is the
CNN, rather than the LSTM or FFT.

To illustrate the importance of fusion layer, we further
compare the network with/without the fusion layer. In the
case of without fusion layer, direct method to fuse the three
components, i.e., LSTM(X) + CNN(X) + FFT(X) is used.
As depicted in Fig. 3b, the fusion layer can improve the
accuracy by considering the importance of each component.

E. Sensitivity of Data Pre-processing

We study the sensitivity of SeaStateNet with respect to
data pre-processing, i.e., the window size N, and the number
of sensors M. In this paper, the raw time series contains
nine sensors. To illustrate the importance of each sensor,
MI is performed and the ranking-based MI index can be
obtained, as shown in Fig. 4a. We take the 3 and 6 most
important sensor inputs and compared them with full sensor
inputs for N = 1000. As illustrated in Fig. 4b, the higher
accuracy is achieved when the number of sensors is nine.
More interestingly, the more sensors there are, the faster the
convergence rate is. The explanation for this result is that the
more sensors there are, the more information can be provided
by the data.

Fig. 4c shows how the accuracy varies with respect to the
change of window size when M = 9. It is obvious to observe
that the convergence rates for window size 200,400,600,800
are almost the same. However, the convergence rate for
window size 1000 is slower at the beginning. Another finding
is that the bigger window size, the higher accuracy becomes.
This is reasonable because a bigger window size brings more
solid and adequate information about the current sea state
so that the estimation accuracy increases. The phenomenon
will be more obvious when using short window size for
estimating high sea state (such as sea state 5 in this paper).

F. Real-time Estimation

To further investigate our model, the proposed model
is applied on the OSC simulator for real-time sea state
estimation. The schematic of this test is shown in Fig. 5.
The SeaStateNet performs real-time sea state estimation after
receiving the data, and the result is sent back to the OSC
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Fig. 4: Sensitivity analysis

platform for on-board support. Not only would it be helpful
for the pilot to better understand the environment, but also
promising if it is further integrated into the control system.

Two periods of the online test were recorded for perfor-
mance analysis. The length of the first and second period
are approximately 36 minutes and 1.5 hours, respectively.
During the entire test, the OSC simulator produced data for
six sea states, and the length of each state is also randomly
generated from 5 minutes to 30 minutes. The model with
window size 1000 is tested. The statistics of this test are
shown in the Table IV. It is worth noting that the system
does not produce sea state 3 in the first period of the test.

From Table IV, we can see that the bigger probability of
sea state would bring larger error in both tests. This means
that the transition of sea state would bring more errors. In our
tests, the error comes from two major parts: the estimation
error of the model itself and the error caused by the sea
state transition. The estimated error for each state may be
almost the same if the testing time is long enough. Thus,
the majority of estimation errors come from the transitions.
In the first period of the test, the order of occurrence of sea
states is 1-5-2-5-4. Most of the transitions take place from
5 - 2 - 5, thus these two sea states (sea state 2 and sea
state 5) contribute most of the errors. This is consistent to
the analysis on the second period of the test, where the most
frequently occurring sea states (sea state 4 and 5) correspond
to a relative lower accuracy.

TABLE IV: Results of real-time tests

Sea State
Probability of

sea state Test 1 Test 2
Test1 Test 2

1 20% 12.5% 100% 93.47%
2 20% 12.5% 96.25% 88.81%
3 0% 6.25% — 98.89%
4 20% 37.5% 99.74% 83.25%
5 40% 31.25% 89.86% 84.23%

Transition number 4 13 — —
Average accuracy — 96.46% 89.73%

V. CONCLUSIONS
In this paper, we propose a novel neural network based

model to classify the sea state based on the ship motion

SeaStateNet

OSC 

Platform

Sea state estimation

Fig. 5: Schematic of real-world application.

data. In the model, an LSTM recurrent neural network is
employed to capture the long dependency in the ship motion
data, a CNN is utilized to extract time-invariant features,
and a FFT is employed to extract frequency features. A
feature fusion layer is implemented to adjust the relative
influence of each of the three components. The proposed
model is applied directly to the raw time series data and only
needs slight data pre-processing, without needing any hand-
engineered features. The proposed model is evaluated in the
benchmark data-sets and ship motion dataset. The experiment
show our model outperforms the baseline methods. The real
tests demonstrate the practicality of our method.

In the future, we will extend our method to solve the prob-
lem of the sea state transition. Moreover, we will integrate
the sea state estimation model to the ship motion monitoring
system to serve the autonomous ship.
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