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Abstract
For safety-critical marine operations, the dynamically po-
sitioned (DP) vessel should maintain a predetermined
heading and position for varying environmental conditions
using the thrusters. Studying the effect of each thruster to
the capability of DP vessels is significance but challeng-
ing. This paper presents a data-driven and variance-based
sensitivity analysis (SA) approach that can dig into the
ship sensor data to estimate the influence of each thruster
for DP operations. Considering high-computational cost
of variance-based SA, an Extreme Learning Machine
(ELM) -based SA is proposed. To apply the SA to sen-
sor data, an ANN is built and trained on the basis of ship
sensor data and then employed as a surrogate model to
generate Monte Carlo (MC) samples. A benchmark test
shows the correctness of the proposed approach. A case
study of SA in DP operation is conducted and the exper-
imental results show that the proposed approach can rank
and identify the most sensitive factors. The proposed ap-
proach highlights the application of variance-based SA in
data-driven modeling for ship intelligence.
Keywords: dynamical positioning, sensitivity analysis,
thrust analysis, data-driven modeling

1 Introduction
With the development of oil and gas exploration and other
operations in the deep sea, DP vessels have obtained more
and more attention. A DP vessel is defined as a vessel that
can maintain a specified position and heading automati-
cally by employing its thrusters to guarantee the continu-
ous offshore operation (Sørensen, 2011). The safety of op-
eration of the DP vessel is often the first consideration to
be paid attention to, especially in those safety-critical op-
erations such as drilling, oil production, and off-loading,
where the positioning and heading accuracy are very high,
regardless of the environmental conditions. To satisfy the
critical requirements, it is necessary to understand the ef-
fect of each thruster to against the environmental factors
(Xu et al., 2015; Pivano et al., 2012).

However, it is not an easy task to study the influence
of each thruster in DP vessels. Mahfouz and El-Tahan de-

veloped a software program with the aim of selecting and
configuring the thrusters for the newly designed DP ves-
sels (Mahfouz and El-Tahan, 2006). A program which is
named as DPCAP is developed by the Maritime Research
Institute Netherlands (MARIN) with the purpose of ana-
lyzing the thruster capacity of the DP vessels. The main
drawback of the DPCAP is that there is no quantitative
method to compare the different thruster configurations.
To improve the ability of DPCAP, Xu et al. proposed a
novel thrust sensitivity analysis on the basis of a newly de-
fined synthesized positioning capability criterion for ma-
rine vessels (Xu et al., 2015). The main limitation of this
method is that it employs local sensitivity analysis (LSA),
which can only reflect the characteristics of the synthe-
sized capability at some fixed points in the input space.

To address the limitation of Xu’s method to study the
effect of each thruster in DP vessels, a data-driven and
variance-based SA approach is proposed. The approach
utilizes the historical data of DP to analyze the influence
of each thruster. In addition, in order to be able to apply
the proposed method to most marine operations to mine
useful information, this paper also proposes a framework
for data analysis in marine operations.

Our on-going project aims to develop intelligent sys-
tems to support decision making in various maritime op-
erations. A new integrated platform including data analy-
sis tools, and data-driven modeling technique is designed,
which will serve the maritime industry for improving op-
erational effectiveness and safety. In this paper, only data
analysis tools part would be focused on. The variance-
based SA would be employed to understand the DP data
(Fernández-Navarro et al., 2017). In the case of only sen-
sor data available, it is still a challenge to employ the
variance-based SA directly to the sensor data of the DP
vessels. Thus, a fitted and validated surrogate model rep-
resenting the motion of DP vessel is constructed on the ba-
sis of sensor data that are observed in a simulated vessel.
To accelerate the SA, an ELM is adapted. The contribu-
tion of this paper includes (1) introducing a framework of
data analysis for offshore operations, and (2) providing a
data-driven SA method that is capable of coping with the
SA on the DP data.
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Figure 1. Framework of data analysis in offshore operations.

The rest of the paper is organized as follows. Section 2
shortly introduces the overall structure of the data analysis
framework. In Section 3, the ELM-based sensitivity anal-
ysis is described in detail. Section 4 presents case studies
and evaluation results. Conclusion and future work are
shown in Section 5.

2 Framework of data analysis for off-
shore operations

Due to the significant uncertainties and various operat-
ing conditions, offshore operations are complex and haz-
ardous. Operational safety is a major issue and is easily
challenged by harsh marine environments, complex geo-
logical conditions, and human and equipment factors. The
conventional model-based solutions require an in-depth
knowledge of the offshore operations, which are imprac-
tical for complicated offshore operations. Fortunately,
with the rapid development of technologies such as data
collection, data mining and artificial intelligence, the ex-
traction of useful information has been significantly im-
proved in the offshore operations (Li et al., 2016, 2017).
Hence, data-driven technology is an alternative that can be
used for efficient operational monitoring and data analysis
(Cheng et al., 2017; Wang et al., 2016).

A considerable amount of sensor data has been accumu-

lated in all kinds of offshore operations. Analyzing these
data has the following difficulties: 1) the sensor data to be
analyzed are usually too large and high dimensional; 2)
they usually contain measurement-induced noise and re-
dundant information, which makes it difficult to analyze
accurately; 3) It is not easy to intuitively interpret the data
from multiple sensors. Furthermore, there are many un-
certainties in these data, which are influenced by a vari-
ety of factors, such as weather conditions, human factors,
and so on. How to characterize and reduce that uncer-
tainty is becoming more and more popular in engineering
research. As an aspect of uncertainty quantification, the
SA is defined as the investigation of “how uncertainty in
the output of a model (numerical or otherwise) can be ap-
portioned to different sources of uncertainty in the model
input factors” (Saltelli, 2002). SA has been widely used
for industrial applications with different purposes, mainly
including assessing the uncertainty, calibrating the model,
and making robust decision (Pianosi et al., 2016). In gen-
eral, SA could be implemented in either a local or a global
manner. The difference is that the former analyzes the
effect of a single input on the output and treats the other
inputs as deterministic values; whereas the latter examines
the sensitivity from the perspective of the entire range of
each input’s variation.

Figure 1 illustrates a possible scheme of the data analy-
sis for offshore operations. Note that the sensitivity anal-
ysis module is the core of the scheme. It takes the sensor
data from numerous offshore applications as input and the
designated metric, e.g., the capability of DP vessels, as
output, to quantify how much the input contributes to the
output. The result can benefit both the DP system per-
formance assessment and behavior analysis in waves. For
example, if one thruster accounts for one of the main fac-
tors for DP system, this element will be given more at-
tention, since, if it fails, the remaining thrusters may not
possible produce sufficient forces to keep the vessel on
the predetermined position and heading. The information
from the sensitivity analysis can also be obtained to estab-
lish an estimator for sea state identification. Based on the
framework, it is possible to implement an intelligent sys-
tem that utilizes data analysis method, artificial intelligent
algorithms and advance control theory to achieve ship in-
telligence for various purposes ranging from sea state es-
timation, risk assessment, manoeuvring evaluation, sensor
diagnosis to behavior analysis.

3 Proposed Approach
To test the feasibility of the introduced data analysis
framework, a data-driven sensitivity analysis approach for
DP operations is proposed, as shown in Figure 2. The
process of the proposed approach is as follows: (1) Train-
ing the artificial neural network (ANN) to generate a sur-
rogate model on the basis of DP sensor data. (2) Vali-
dating the model. (3) Performing variance-based SA on
the well-trained surrogate model. In order to accelerate
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Figure 2. Workflow of the proposed approach.

Sobol’ method, Radial basis function (RBF)-based ELM
is integrated into Sobol.

3.1 ANN-based surrogate model
The data-driven ANN is an essential part of the scheme. It
has multiple roles: First, it provides a bridge between the
modeler and the sensor data to better simulate and under-
stand the ship’s behavior. Second, the data-driven ANN
model is employed to generate a number of input param-
eters using Latin Hyper-cube Sampling (LHS) technique
and to calculate the corresponding output. In this paper, a
three-layer feed-forward neural network is established for
the proposed method. The Back-Propagation (BP) algo-
rithm is used as a learning algorithm. Sigmoid functions
and linear functions are used as activation functions for the
hidden and output layers, respectively. During the training
phase, 80% of sensor data is used for training, and the re-
maining 20% is used for testing and validation.

3.2 ELM-Sobol SA method
Assuming the model form is f (XXX) = f (x1, ...,xM), where
XXX = (x1, ...,xM) represents the model input which contains
M independent parameters. The model output can be de-
composed as follows (Saltelli and Sobol’, 1995; Li et al.,
2006):

f (XXX) = f0 +
M

∑
i=1

fi(xi)+ ∑
1≤i≤ j≤M

fi j(xi,x j). (1)

Eq.(1) is known as ANOVA-representation (Analysis of
Variance). f0 is the mean of output. fi and fi j are the first-
and second-order decomposition of output, respectively.

The variance of the model output can be obtained as
follows:

Vy = E( f (XXX)2)− f 2
0 (2)

The main sensitivity index can be defined as follows:

Si =
Vi

Vy
=

V (E( f (XXX)|xi))

Vy
(3)

The Sobol’ method employs the MC methods to calcu-
late the sensitivity index which brings high computational
complexity. In this paper, the idea of Wu et al. (Wu et al.,
2016) is adapted to reduce the computational complexity
of Sobol’.

Assuming the model output can be represented by the
RBF-based ELM, which formulation is shown as follows:

f (XXX) =
N

∑
i=1

ωiϕi(XXX) (4)

where ϕi is the i-th basis function and ωi is the coefficient
of i-th basis function. According to Eq.(1), f0 is the ex-
pectation of the model output.

f0 =
∫ 1

0
f (xxx)dxxx =

N

∑
i=1

∫ 1

0
ωiϕi(xxx)dxxx =

N

∑
i=1

ωi

m

∏
j=1

ψ
j

i

(5)
The ψ

j
i can be calculated using the Gaussian cumula-

tive distribution function.

ψ
j

i = ci
√

π

[
Φ

{
√

2
1− x j

i
ci

}
+Φ

{
√

2
x j

i
ci

}
−1

]
(6)

where Φ is the Gaussian distribution function, and ci is
the center of i-th basis function. The mean square of the
model output can be computed as:

E( f (xxx)2) =
∫ 1

0
f 2(xxx)dxxx =

N

∑
k=1

N

∑
i=1

∫ 1

0
ωkωiϕk(xxx)ϕi(xxx)dxxx

=
N

∑
k=1

N

∑
i=1

ωkωi

m

∏
j=1

ψ
j

ki

(7)
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ψ
j

ki = e
−

x j
i −x j

k
c2
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k cik
√

π

[
Φ

{
√

2
1− x j

ik
cik

}
+Φ

{
√

2
x j

ik
cik

}
−1

]
(8)

where c2
ik =

c2
kc2

i
c2

k+c2
i
, x j

ik =
c2

kx j
i +c2

i x j
k

c2
k+c2

i
Considering the input factor xd , the first order term is

fd(xd) = E(y|xd)− f0 =
∫ 1

0

∫ 1

0
f (xxx)

m

∏
j=1, j 6=d

dx j− f0

=
N

∑
i=1

ωiϕi(xd) ∏
j=1, j 6=d

ψ
j

i − f0

(9)
Then the partial variance of xd can be calculated as fol-

lows:

V [E(y|xd)] = E( f 2
d (xd))− f 2

0

=
N

∑
i=1

N

∑
k=1

ωiωkψ
d
ki ∏

j=1, j 6=d
ψ

j
i ψ

j
k − f 2

0
(10)

One can see that the Sobol’ method can be computed
by the coefficients of RBF.

4 Experiment
This section mainly refers to three relevant experiments
which are used in verifying the feasibility of the method
we proposed.

4.1 Benchmark function
The first subsection is dedicated to the validation of the
proposed approach. The widely used benchmark Sobol’
function (Kersaudy et al., 2015) in variance based GSA
is employed to test the performance of the proposed ap-
proach. The expression of Sobol function is shown as fol-
lows:

f (xxx) =
M

∏
i=1

|4xi−2|+ai

1+ai
xxx ∈ [0,1]M (11)

In this paper, M = 7 is the number of input parameters.
The a1 - a7 are set to 1,2,5,10,20,50,100. First, the origi-
nal samples are set big enough to generate a high accuracy
ANN model, and 10 ANN models are created, and the best
model is chosen from the 10 models based on the perfor-
mance test using RMSE. The sensitivity results are listed
in Table 1.

As the Table 1 shows, the proposed approach is com-
petent to improve the computational efficiency but not
sacrificing on precision, compared with the Monte Carlo
method. The proposed approach significantly reduces the
computational complexity regarding the number of ANN

Table 1. First-order sensitivity index of each input.

Input
Samples of
Proposed approach

Samples of
Monte Carlo Analytical

128 256 512 5000
x1 0.334 0.570 0.595 0.609 0.604
x2 0.294 0.240 0.265 0.272 0.268
x3 0.041 0.061 0.063 0.071 0.067
x4 0.015 0.019 0.015 0.019 0.020
x5 0.007 0.008 0.011 0.011 0.010
x6 0.005 0.005 0.006 0.001 0
x7 0.009 0.007 0.002 0.001 0

Main 

thruster

Tunnel 

thruster

No.1

No.5

No.6 No.2No.3No.4

Figure 3. Thruster configuration

samples. Considering the complexity of a model, the pro-
posed approach does not raise the computational complex-
ity of conducting the variance-based GSA. Therefore, the
more complex the model is, the more computation time
would be reduced.

4.2 Sensitivity result of the DP thrusters
A sensitivity analysis for a DP vessel is conducted to as-
sess how effectively the analysis determined the most sen-
sitive thruster. The case ship model used is equipped with
two tunnel thrusters in the bow, two tunnel thrusters and
two main propellers at the stern, which is shown as Figure
3. The vessel is equipped with DP controller and the ship
motion data and thruster data are collected.

For better analysis, we assume uniform, independent
distributions for all parameters and initial conditions. The
definition of input variability space then only requires
defining the range of variation of each input factor. In this
study, we chose to use ranges as wide as possible. Some
parameters have the range according to the physical mean-
ing of the parameters; the range of the others are confined
by the minimum and maximum observed values of that
variable over the entire data set.

As the performance of DP vessel is strongly related to
the wind and wave, this section focuses on the influence
of each thruster to the ship heading under different en-
vironmental effects. Therefore, ship heading was chosen
as output variable, the output thrust of the six thrusters
are considered as the input variables of the ANN model.
The DP operation is simulated in the Offshore Simulator
Centre AS (OSC), with the height of the wave assumed to
remain constant at 2 m (ITTC spectrum and 15s period).
The wind increases from 4 m/s to 12 m/s. Three scenarios
with the wind and wave come from three different direc-
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Figure 5. Sensitivity results of three scenarios.

tions are conducted, as shown in Figure 4.
Figure 5a, Figure 5b and Figure 5c show the sensitiv-

ity results of the three scenarios, respectively. In scenario
1, it can be seen that there are four parameters (thruster 1
∼ thruster 4) which are important to heading. The possi-
ble explanation for scenario 1 is that the transverse force
and moment are highly depends on the four thrusters, and
the wave and wind have no influence on the transverse
force and moment. In scenario 2, it is obvious that the
most sensitive thruster is thruster 1, and the thruster 3 fol-
lows. In order to overcome the transverse force generated
by wind and waves, thruster 1 and thruster 3 supply suffi-
cient forces in transverse direction. As showed in Figure
5c, it is clear that the most sensitive thruster is the thruster
3. This is also recognized in the greater sensitivity result
in thruster 4. As showed in Figure 4, the direction of wave
and wind are the same. Hence, the expected thrust would
be provided by those thrusters with orientation close to the
direction of the environmental force. It can be concluded
that, to improve the ability of DP in scenario 3. It is most
effective to increase the propulsion capability of thruster
3.

4.3 Knowledge understanding of DP
In this paper, a dual-layer DP controller was used, in-
cluding the motion controller and thruster force alloca-
tion controller. This paper mainly focuses on whether the
thrust allocation is reasonable under different environmen-

tal disturbances and whether it can maintain the ship’s po-
sition and heading. When the wind and waves come from
the longitudinal direction, the main thruster will gener-
ate strong thrust to counteract the influence of wind and
waves. Note that the two main thrusters are operated us-
ing the same command and therefore does not contribute
any torque about the transverse direction. In this case, the
tunnel thruster with a large moment of force should have
a greater influence on the heading angle. From the ex-
perimental results, as showed in Figure 5a, the thruster 2
has a large influence on the heading angle and the main
thruster (thruster 5 and thruster 6) has relative lower influ-
ence. Therefore, the force allocation is reasonable under
such circumstances. When the wind and waves come from
the side, the thrust generated by the tunnel thruster near
the environmental force should have a greater influence on
the ship heading. The reason is that those thrusters close
to environmental forces need to generate large thrusts to
counteract environmental forces. From the experimental
results of scenario 2 and scenario 3, when the force by
the wind and wave is close to the orientation of thruster 1
and 2, the influence of thruster 1 and 2 should be greater.
When the force by the wind and wave is close to the ori-
entation of thrusters 3 and 4, thrusters 3 and 4 should have
a higher influence.
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5 Conclusion
In this paper, a data analysis framework for offshore oper-
ations is introduced. An approach integrated ELM-based
SA with ANN is proposed that can be applied for DP sen-
sor data. This approach can be employed to quantify the
influence of each thruster of DP vessels. To improve the
capability of the DP vessels, the most effective way is to
increase the thrust when the most sensitive thruster is iden-
tified. In order to verify the feasibility of this approach, a
benchmark test is conducted. The benchmark test vali-
dated the feasibility of the proposed method used for con-
ducting SA. Another experiment of SA on heading mod-
eling in DP operation was conducted. The result shows
that this approach can identify those influential factors that
have an effect on the heading of the DP vessel. It is seen
that the sensitivity analysis of thruster depends crucially
on the environmental disturbances. Thus, the sensitivity
analysis is of value in the preliminary design of the thrust
system of DP vessels.

The sensitivity analysis of the thruster is highly time-
dependent. However, in this study, the surrogate model
is ANN which cannot represent the dynamic of the DP
vessel completely. Therefore, our future work will focus
on investigating how to extend the proposed method to
adapt to such external disturbances.
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