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Abstract—The proposed method in this paper aims to better
understand the log data from the commuter ferry. By the method,
the mechanism of how the human expertise operates the ferry
can be found, and thus help to establish ship intelligence for the
autonomous commuting sailing. The log data of sailings with the
same departure and arrival ports is of interest in this respect.
The method defines different phases of a sailing as different
scenarios in terms of the features contained in the collected data.
The features are reflected by the ship behavior/response and the
ship machinery/actuators. Compared to the typical sailing phases
which are distinct to each other, the features can be uncertain
when the ferry transfers from the current phase to the sequential.
The concept of the transition time window is thus raised to
interpret the uncertainty between adjacent phases. Based on the
collected data, the human expertise is involved to summarize
features and generate empirical criteria for the decomposition.
After the whole sailing being split into a sequential-scenario
series, statistical heat maps are drawn to illustrate the likelihood
site with respect to the collected log data. In practice, log data
collected from a customized commuting route in Trondheim are
analyzed by the proposed method.

Index Terms—Data analysis, commuter ferry, autonomous
surface vehicles, decision support

I. INTRODUCTION

Nowadays, although autonomous techniques are becoming
increasingly popular in various industries as well as people’s
everyday life, it is still under development in the shipping
industry, where manual work is highly demanded. Yet, it is
reported that 70-90 % marine accidents are caused by human’s
improper operations [1][2]. Apart from potential navigation
risks, the huge expenditure spent on employing on-board
staff members also triggers stakeholders to invest shipping
autonomy. As a result, researches on autonomous ships have
gained great popularity in both industry and academia in
the recent years. With the rapid development of artificial
intelligence, such as data mining, machine learning, sensor
fusion, and also with the hardware apparatus becoming more
robust and precise, the advent of autonomous ships seems
promising in the near future [3].

One of the major concerns that may hamper the appearance
of autonomous ships is its uncertainty when facing unexpected
situations. It is argued that, with the current ship intelligence,
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autonomous ships are likely to perform well under normal
circumstances [4][5]. However, their capacity to handle cases
of complicated conditions, especially in the case of danger
and emergency, is highly contentious. In this respect, human
expertise is believed to outperform ship intelligence as hu-
mans are able to address unexpected situations synthetically
based on their knowledge and experience [6][7]. Although a
large proportion of marine accidents are initiated by humans,
it cannot be neglected that human expertise has operated
their vessels safely and successfully for innumerable sailings.
Hence, unless ship intelligence is fully tested to be able to
take rational action under any circumstances on-board, human
operation will continue to be the best option of sailing. From
this point, the mechanism of how human expertise operates
vessels can set a paradigm for ship intelligence [8].

Under this background, it is suggested that ship intelligence
should be applied in some simple cases first [9]. A commuter
ferry that executes a regular route between two unaltered ports
can be seen as a pragmatic example. A commuting route
simplifies the autonomous navigation process to a large extent,
for example one commuting route is usually followed by the
same vessel or similar ones, and the hydrological conditions
at the same location usually do not vary much, and thus can
be used to test ship intelligence. A commuting route usually
follows an assigned seaway at a short sailing mileage, which
implies that the whole sailing procedure contains countable
pivotal operations. In addition, a commuting route is usually
close to the shore and the coast patrol and/or the on-call
security guard in the vicinity can take immediate rescue action
if an accident were to happen, which consequently reduces
the risk of inducing considerable loss [10]. In a word, the
commuter ferry provides one of the most ideal and applicable
scenario in which ship intelligence can be facilitated.

In recent years, the value of data is getting more em-
phasized, as well as in the maritime field. There have been
researchers utilizing the automatic identification system (AIS)
data for autonomous navigation [11][12], using the on-board
data to monitor the status of the ship health [13][14], or
trying to find the human expertise’s navigation mechanism
from their behavior [15]. While, this paper emphasises the
importance of log data. There are innumerable commuter
ferries running in the world every minute; while compared
with the pelagic ocean route, the commuting route usually



follows a seasonal schedule and runs more frequently. Yet, the
massive quantity of data are not wisely utilized. It is previously
noted that human expertise operations on-board can serve as
the paradigm for ship intelligence. The scenario of the com-
muting route provides relatively a large amount of practice.
In addition, log data often contain the key information (such
as human commands, the ship motion and response, and the
environmental conditions) that can be utilized to build a model
that can demonstrate the whole sailing procedure explicitly
[16]. Furthermore, the model can reflect the mechanism of
how humans operate their vessels systematically. In return, the
established mechanism can help support on-board decisions
and to develop ship intelligence.

This paper suggests a method to interpret the log data
from a commuter ferry. Firstly, the log data recording sailings
on the commuting route are cut out from the timeline into
fragments, and each fragment contains the information of one
entire sailing. With this method, the sailing data are sorted
into different groups (e.g. actuators and response) with respect
to what the data presents. Next, the relationships between
different data groups are explored and qualitatively established
with respect to the advice from the human expertise. Both
the features of different data groups and their relationships
are used to help to divide the whole route into several
scenarios. At last, a statistical heat map is drawn based on the
scenario decomposed result and the locations at which critical
operational commands take place.

The layout of the paper is as following: Sec. II presents the
proposed method in detail, including the data collecting and
pre-processing, the scenario decomposition and the definition
of the transition time window, and how the data will be utilized
to demonstrate the commuter sailing. Sec. III gives the results
of decomposition of the log data, and also how it is interpreted
by statistical analysis. A discussion about the result and the
application prospect is given in Sec. IV. At last, a conclusion
follows in Sec. V.

II. METHODOLOGY

The main objective of this paper is to understand how
the captain maneuvers the commuter ferry during the whole
sailing procedure based on the recorded log data which may
reveal the interaction between the command of the captain
and the situation/behavior of the ship. The analytical method
with respect to the advice from the human expertise is used
to extract features from the data in order to demonstrate the
behavior of the ship and label its status. Statistics based on
the features and the labeled status are expected to form the
site of the likelihood for each of the decomposed scenarios.
The flowchart of the method framework is given in Fig. 1.

A. Data collection and pre-processing

The data used in this paper are collected from a commuting
route located in Trondheim, Norway. The commuting route
connects the Trondhjem Biological Station and the berthing
point at the estuary of the Nidelva river. The commuting route
is executed by NTNU’s research vessel R/V Gunnerus. The
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Fig. 1. Flowchart of the proposed method.

Fig. 2. Collection of 21 commuter sailings.

TABLE I
CLASSIFICATION OF LOG DATA

Ship behaviors Machinery actuators Environment
course (◦) engine status (0/1) wind speed (knots)

heading (◦) bow thruster feedback (%) wind direction (◦)
speed (knots) portboard-rpm feedback (%)
position (◦) starboard-rpm feedback (%)

roll (◦) portboard-Azi feedback (◦)
pitch (◦) starboard-Azi feedback (◦)
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Fig. 3. Wind speed and direction in statistics.



vessel is equipped with a bow thruster for the positioning
operation at 200 kW and two main azimuth thrusters, each
with the propulsion at 500 kW [17]. The log data record the
information of 21 sailings from September 2016 to August
2017 as shown in Fig. 2. The log data are recorded under
the Unix Epoch time and then converted to the UTC system
so as to make them readable. The log data are updated every
second, i.e., a sampling frequency of 1 Hz.

The information contained in log data can be classified into
three groups which is shown in Table I. It includes ship be-
haviors, machinery actuators and environment conditions. The
items in the ship behaviors group follow the convention. The
geographic north is denoted as 0◦ and increases clockwise. The
location of the ferry is referred by the geographic coordinate
system with the longitude and latitude. The engine status is
denoted by 0 for off or 1 for on.

Two items that demonstrate the wind speed and direction
are also included in collected data. By calculating the average
wind speed and direction when the ship stops in the quay, the
wind conditions of the 21 sailings are estimated and presented
in Fig. 3. The wind speed and direction of two data sets are
the same and overlap in the figure, hence there only 20 data
points. It shows that the highest average wind speed is under
5 knots, which is rated at level 2 according to the Beaufort
wind force scale (B in Fig. 3). As the wind at this level is
often considered to have trivial effects on sailings, the wind
data will not be further analyzed in this paper.

B. Decomposed scenarios’ definition

After scrutinizing the data of 21 sailings, the commuting
route can be intuitively decomposed into four main stages,
including departing, cruising, turning and docking. There are
two distinguishable phases in the docking stage, named as
converging (to the shore) and bow thrusting phase respectively.
The scenario sequence of the decomposition is shown as Fig.
4.

The definition of each scenario is given as follow:
• Departing: the ferry sets off from the port. At the

beginning of this stage, the bow thruster usually starts
first with the azimuth thrusters at an assigned angle and
low RPM to translational push the ferry to a safe distance
from the dock wall. Then the ferry will turn to the
desired direction by adjusting the azimuth angle. During
the turning phase, the RPM will increase to accelerate
the ferry and will be loaded at the maximum value a
little earlier than the ferry getting the heading for cruising
direction.

• Cruising: the ferry sails smoothly in the open water.
The speed at this stage is usually at the maximum
cruising speed. The trajectory of the cruising phase is

Departing Cruising Turning Converging bow-thrust

Docking

Fig. 4. Decomposing the complete commuting route into scenarios.

Fig. 5. Decomposition of the commuting route (the color scheme referring
to Fig. 4).

almost a straight line without heading variation (except
for necessary collision avoidance). Since the pitch angle
is proportional to the surge speed, the pitch increases
significantly during this stage.

• Turning: the ferry changes its course during the sailing.
Before making a turn, the ferry will decelerate sharply
to a moderate speed, and then the azimuth angle will
be steered meticulously to turn the ferry. After the ferry
heads the new desired direction, the speed will regain
within a certain extent if the channel condition allows.

• Converging: the ferry travels in the channel water and
gets closer to the coast wall but keeps a safe distance
from it. The phase is similar to the cruising stage, but the
speed is much lower and the heading may vary slightly
as required.

• Bow thrust: the ferry pushes itself towards the quay when
it arrives at the dock site in a way that is in parallel with
the dock wall. The speed at this phase is close to zero. The
bow thruster will be turned on, and the azimuth thrusters
will adjust their angle to help the ferry to be translational
thrusted into the quay.

The decomposed route is illustrated on the map as Fig. 5.
Only the non-overlapping parts are considered as typical to
the decomposed stages or phases, while the overlapping parts
will be introduced in the part C.

C. Empirical criteria based on human expertise

Based on the collected data and under the supervision
of human expertise, empirical criteria are given as listed in
Table II. Basically, since there are several items describing
one scenario simultaneously, by which the accuracy has been
guaranteed to determine the ferry’s status at the moment,
the value range of the data is constrained softly to avoid
misjudging caused by the common fluctuation of the ship
status during a sailing (even in a steady state). For example,
the cruising scenario is described by so many feature items



TABLE II
EMPIRICAL CRITERIA FOR THE COMMUTING ROUTE DECOMPOSITION

Departing Cruising Turning Converging Bow-thr.
Ship behaviors
heading (ψ, ◦) ∆ψ

∆t
< −0.3 |∆ψ

∆t
| < 0.1 ∆ψ

∆t
> 0.5 |∆ψ

∆t
| < 0.1 –

grounding speed (v, knot) 6 6 > 10 ∆v
∆t

< −0.02 [4, 6] 6 2
pitch (◦) – abs∗ > 0.5 – abs > 0 –
Machinery actuators
bow thruster (%) abs > 0.1 – – – abs > 10
port-rpm (%) abs < 60 abs > 75 abs ∈ [40, 60] abs ∈ [40, 60] abs ∈ [0, 30]
stbd-rpm (%) abs < 60 abs > 75 abs ∈ [40, 60] abs ∈ [40, 60] abs ∈ [0, 30]
port-azi (◦) abs > 0.5 abs < 1 abs > 0.5 abs < 2 > 50
stbd-azi (◦) abs > 0.5 abs < 1 abs > 0.5 abs < 2 abs < 1

* abs is the abbreviation of absolute value.

(all eight items) that the judgement has been guaranteed to be
correct to a certain extent. Hence, some items are constrained
softly, such as the grounding speed is relaxed to minimum 10
knots instead of restrict cruising speed. In a word, the number
of constraints and the hardness should be balanced well so that
empirical criteria are able to decompose the commuter route
correctly.

It should be noticed that, suggested by the human expertise,
collected data do not reflect distinguishable features between
different scenarios for the roll motion, so that data of roll
motion are considered as redundant. For the engine status,
since the engine in always on, engine data are considered as
redundant as well. These two data items are excluded when
generating empirical criteria.

D. Transition time window

When the ferry shifts from the current scenario to the
next, some necessary operations should be taken to alter the
ship motion status in order to meet the sailing requirement.
This time window for operations and the ship transferring
to a new scenario is defined as a transition time window.
The overlapping parts in Fig. 5 are considered as transition
time windows. The relationship between the transition time
windows and the scenario on the timeline is shown as Fig. 6.

There will be a short period of time in which the status
of the ferry is of uncertainty. This means that the ferry status
cannot be affirmatively identified as any of pre-defined scenar-
ios. The situation is usually that the ferry status has mutual
features of both the pre- and post-scenario. For example, when
the ferry shifts from departing to cruising, the main thrusters
reach 80% MCR before the heading turns into the desired
direction (which is similar to the departing scenario). When
the heading is stable, the ferry is yet accelerated to the cruising

scenario	Sn
pre-Sn

timeline

...		... ...		...

transition	time	window scenario

scenario	Sn-1 post-Sn-1

Fig. 6. Transition time windows on the timeline.

speed (which is similar to the cruising scenario). However,
there might exist situations where the ferry status is only
similar to either the pre-scenario or the following one with
noticeable difference; and sometimes the ferry status may be
different from neither the pre-scenario nor the following one.

E. Statistical heat map

Statistical method is believed to be able to interpret the
decomposed data. The statistical figure is to be calculated and
demonstrated by a heat map to help understand how the com-
muting sailing is regulated by the manual steering with respect
to the location. After every commuting sailing is decomposed
into scenarios according to empirical criteria, a heat map
can be drawn for each scenario accumulatively based on all
collected sailings’ data. In this case, by transferring collected
data poins into a heat map, the density of the distribution with
respect to the location can be clearly reflected. Thus, sites of
likelihood for all scenarios can be qualitatively established.
The heat map implies the occurrence possibility of the ferry
at each location. The heat map may help to support on-board
decisions in the further application.

III. RESULTS

A. Decomposition result by the empirical criteria

The 21 sailings’ log data are decomposed according to
empirical criteria in Table II. The decomposition result is given
in Table III. The decomposition result is denoted in the form
(start time, end time), the unit of time is second. The real
period for each scenario (split by the human expertise manu-
ally) is listed in columns Real as the standard reference. From
the form, it is noticed that the decomposition is incomplete
in some sailing record. By reviewing the collected data, it is
found that the heading was not recorded for sailing No. 5 while
the bow thruster feedback was not recorded for sailings No. 20
and 21. During the cruising stage of sailing No.12, the ferry
was operated much lower than the rated cruising speed. In
sailings No.12 and No.13, the starboard azimuth angles were
steered in an abnormal way. Consequently, these 5 groups of
sailing data will not be further analyzed.

To understand the decomposition result better, two evaluat-
ing terms are defined:



TABLE III
RESULT OF THE SCENARIO DECOMPOSITION BY THE EMPIRICAL CRITERIA*

Departing Cruising Turning Converging Bow-thrust
E.C.∗∗ Real E.C. Real E.C. Real E.C. Real E.C. Real

1 (439,530) (399,542) (567,1091) (566,1098) (1181,1233) (1118,1248) (1253,1531) (1250,1587) (1609,1761) (1603,1794)
2 (1,323) (1,391) (404,894) (404,900) (901,1044) (895,1053) (1055,1351) (1060,1354) (1414,1800) (1382,1659)
3 (307,504) (322,556) (552,1033) (552,1053) (1074,1135) (1040,1186) (1194,1407) (1196,1547) (1606,1799) (1569,1847)
4 (332,352) (260,466) (507,931) (494,949) (970,1084) (967,1138) (1021,1372) (1177,1434) (1500,1765) (1406,1773)
5 – (178,491) – (555,1015) – (1038,1178) – (1208,1473) (1528,1763) (1489,1820)
6 (384,487) (209,488) (525,1025) (523,1031) (1080,1170) (1069,1170) (1210,1514) (1195,1575) (1581,1672) (1580,1803)
7 (125,225) (108,244) (268,767) (259,793) (860,926) (816,953) (943,1294) (962,1342) (1343,1751) (1324,1801)
8 (316,429) (276,457) (464,935) (453,935) (947,1101) (941,1106) (1114,1511) (1110,1550) (1577,1797) (1570,1843)
9 (240,349) (204,399) (433,898) (425,892) (947,1031) (930,1046) (1050,1429) (1059,1556) (1567,1620) (1560,1717)
10 (123,205) (94,255) (295,770) (270,770) (797,885) (793,1011) (1026,1397) (1034,1401) (1439,1641) (1415,1648)
11 (108,221) (91,242) (298,809) (265,814) (850,874) (825,911) (924,995) (923,1336) (1394,1677) (1372,1683)
12 (17,397) (209,516) – (543,1057) (1063,1079) (1071,1216) (1223,1476) (1248,1478) – (1496,1850)
13 (29,91) (18,161) (215,690) (179,693) (704,861) (679,802) (811,1097) (810,1156) – (1163,1614)
14 (326,433) (237,457) (467,944) (463,955) (981,1141) (973,1132) (1175,1396) (1138,1437) (1453,1609) (1440,1696)
15 (291,372) (200,406) (416,884) (415,901) (932,1031) (925,1034) (1048,1392) (1046,1436) (1446,1800) (1449,1650)
16 (244,311) (126,304) (357,855) (349,869) (863,1018) (856,1020) (1026,1350) (1041,1398) (1409,1718) (1407,1720)
17 (486,544) (329,584) (605,1072) (602,1085) (1108,1232) (1102,1242) (1242,1531) (1287,1530) (1620,1744) (1582,1804)
18 (413,500) (370,502) (546,1028) (545,1043) (1123,1185) (1110,1188) (1202,1530) (1205,1528) (1588,1719) (1567,1762)
19 (496,564) (402,615) (685,1160) (683,1164) (1187,1263) (1174,1285) (1292,1541) (1293,1570) (1641,1759) (1635,1788)
20 – – (606,1110) (605,1113) (1137,1263) (1124,1268) (1275,1581) (1268,1648) – –
21 – – (254,759) (253,766) (782,860) (781,870) (874,1457) (860,1134) – –
* The unit of values in the table is second.
** E.C. is the abbreviation of empirical criteria in Table II.

TABLE IV
OVERFLOW RATE OF THE DECOMPOSITION*

Departing Cruising Turning Converging Bow-thr. Overall
1 0 0 0 0 0 0
2 0 0 0 1.7 50.9 9.04
3 6.41 0 0 0.57 0 1.13
4 0 0 0 60.7 0 10.71
6 0 0 0 0 0 0
7 0 0 0 5 0 1.14
8 0 0 0 0 0 0
9 0 1.28 0 1.81 0 1.05
10 0 0 0 2.18 0 0.54
11 0 0 0 0 0 0
14 0 0 5.66 0 0 0.63
15 0 0 0 0 76.12 10.99
16 3.93 0 0 4.2 0 1.44
17 0 0 0 18.93 0 3.43
18 0 0 0 1.55 0 0.41
19 0 0 0 0.4 0 0.09
Overall 0.67 0.08 0.41 4.75 7.12
* The value is written with percentage (%) .

• Overflow rate: when the judgement result by the empiri-
cal criteria is out of the real scenario scale, the judgement
is regarded as an overflow value. Then the overflow rate is
calculated by dividing the total number of overflow value
by the scenario’s real time span. Smaller overflow rate
indicates better decomposition performance. The result
is given in Table IV.

• Coverage rate: when the judgement result by the empir-
ical criteria is in the real scenario scale, the judgement
is said to be a candidate of coverage. Then the coverage
rate is calculated by dividing the total number of coverage
candidates by the scenario’s real time span. Larger cover-

TABLE V
COVERAGE RATE OF THE DECOMPOSITION*

Departing Cruising Turning Converging Bow-thr. Overall
1 63.64 98.5 40 82.49 79.58 82.30
2 82.56 98.79 90.51 98.98 88.45 92.32
3 77.78 96.01 41.78 60.11 69.42 74.70
4 9.71 93.19 66.67 75.88 72.21 69.92
6 36.92 98.43 89.11 80.00 40.81 72.97
7 73.53 93.45 48.18 87.37 85.53 84.44
8 62.43 97.72 93.33 90.23 80.59 87.93
9 55.90 98.29 72.41 74.45 33.76 75.07
10 50.93 95.00 40.37 98.91 86.70 81.81
11 74.83 93.08 27.91 17.19 91.00 66.36
14 48.64 96.95 94.97 73.91 60.94 77.98
15 39.32 96.30 90.83 88.21 100.00 85.70
16 33.71 95.77 94.51 86.55 98.72 86.88
17 22.75 96.69 89.21 100.00 55.86 75.71
18 65.91 96.79 79.49 100.00 67.18 88.50
19 31.92 98.75 68.47 89.53 77.12 79.76
Overall 51.71 96.46 70.52 80.29 76.35
* The value is written with percentage (%) .

age rate indicates better decomposition performance. The
result is given in Table V.

Tab. IV implies that the decomposition by the empirical
criteria is, to some extent, conservative in the scenarios of
departing, cruising and turning. It is conservative in the
scenario of bow-thrusting as well in most cases, with only
sailings No.2 and No.15 having a large overflow rate, which
contributes to the overall rate. The overflow happens more
frequently in the converging phase than other scenarios, but
the rate is acceptable in most cases while is conspicuous large
in sailing No.17 and exaggerated large in sailing No.4.

According to Table V, it reveals that the decomposition
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Fig. 7. Decomposition of sailing No.1 (color scheme referring to Fig. 4).
E.C. is abbreviated for empirical criteria.

200 400 600 800 1000 1200 1400 1600 1800

Time (s)

Real

E.C.

Fig. 8. Decomposition of sailing No.15 (color scheme referring to Fig. 4).
E.C. is abbreviated for empirical criteria.

by the empirical criteria has a good coverage performance
in most scenarios. The coverage rate of the cruising scenario
is 96.46% which suggests that the decomposition reflects the
real situation almost entirely. The coverage rate is relatively
lower in departing scenario. One reason behind it might be
the great complexity of the scenario, for example, sometimes
it requires the ferry to use the bow thruster to push it out of the
port while sometimes not. The complexity somehow increases
the difficulty to correctly extract the whole scenario from the
timeline by the empirical criteria.

Take sailings No.1 and No.15 for example. The decompo-
sition results are depicted as Fig. 7 and Fig. 8 respectively.
The blank intervals between each two scenarios are transition
time windows defined in Sec. II. The two examples prove
that the decomposition result is conservative in most scenarios.
However, the detail of the overflow in Fig. 8 happening in the
bow thrusting phase is that the empirical criteria misjudges the
phase for a long time when the phase ends. This might be that
due to the effect of the current and/or wind, the bow thruster
and the azimuth angles of the main thrusters keep functioning
to hold its position even after the ferry has reached the berthing
point.

Based on effective log data from 16 sailings, the statistical
heat maps are drawn according to the decomposition by the
empirical criteria. The heat maps depicting the likelihood sites
of each scenario or phase are shown in Fig. 9-13 (departing,

Fig. 9. Heat map presenting the likelihood site of the departing scenario.

Fig. 10. Heat map presenting the likelihood site of the cruising scenario.

Fig. 11. Heat map presenting the likelihood site of the turning scenario.

Fig. 12. Heat map presenting the likelihood site of the converging phase.

Fig. 13. Heat map presenting the likelihood site of the bow thrusting phase.



cruising, turning scenarios and converging, bow thrusting
phases respectively).

In general, there is a kernel in the likelihood site of
each scenario or phase, which implies that the ferry passes
the kernel area with the largest possibility according to the
historical log data. The likelihood site of each scenario or
phase is constrained in a certain area and does not overlap with
the likelihood sites of other scenarios or phases. This suggests
that the decomposition by the empirical criteria performs well
to distinguish different sailing scenarios.

From the heat maps, more details are explored and repre-
sented. In Fig. 10, the kernel at the tail (upper right of the
track) is more condensed than at the head (lower left of the
track). The reason is that the ferry begins to decelerate, which
then render itself leaving more tracing points in the late phase
of the cruising scenario.

IV. DISCUSSION

From the result, a qualitative relationship between the ship
status (determined by empirical criteria) and the location is
clearly reflected by heat maps. Heat maps illustrate likelihood
sites of different scenarios, which can be considered to fa-
cilitate the on-board decision support system. Since there are
necessary maneuvering operations in each scenario, if they
are not executed when the ferry enters the corresponding
likelihood site, the decision support system will alarm. In
another respect, since heat maps are obtained statistically, they
can assist to determine the optimal path for the commuting
route. However, the quantity of data being analyzed in this
Trondheim commuter route is relatively small. With more data
volume, the likelihood site may attain a higher resolution, and
be quantitatively determined.

V. CONCLUSION

This paper presents a method to interpret the log data from
a commuter ferry. The proposed method aims to construct the
mechanism of how human expertise steers a ferry, and then
model the mechanism as criteria to judge the status of the
ship during a sailing. The model criteria can thus be used
to support on-board decisions. As the commuting route is
considered as a promising application for ship intelligence,
the method is implemented on a customized commuting route
in Trondheim. In order to establish the empirical criteria
model, human expertise’s advice is taken into account to
define different sailing scenarios in the commuting route. At
last, the decomposition result is demonstrated by statistical
method to help better understand the mechanism of operating a
commuting ferry. The qualitative relationship between the on-
board actuators’ action and ship response is thus established
to cooperatively judge the status of the ferry.
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[1] T. Porathe, Å. S. Hoem, Ø. J. Rødseth, K. E. Fjørtoft, and S. O. Johnsen,
“At least as safe as manned shipping? autonomous shipping, safety and
“human error”,” Safety and Reliability–Safe Societies in a Changing
World. Proceedings of ESREL 2018, June 17-21, 2018, Trondheim,
Norway, 2018.

[2] A. M. Rothblum, “Human error and marine safety,” in National Safety
Council Congress and Expo, Orlando, FL, no. s 7, 2000.

[3] E. Jokioinen, J. Poikonen, R. Jalonen, and J. Saarni, “Remote and
autonomous ships-the next steps,” AAWA Position Paper, Rolls Royce
plc, London, 2016.

[4] M. Hinostroza and C. G. Soares, “Collision avoidance, guidance and
control system for autonomous surface vehicles in complex navigation
conditions,” in Progress in Maritime Technology and Engineering:
Proceedings of the 4th International Conference on Maritime Technology
and Engineering (MARTECH 2018), May 7-9, 2018, Lisbon, Portugal.
CRC Press, 2018, p. 121.

[5] Ø. J. Rødseth and H. C. Burmeister, “Developments toward the un-
manned ship,” in Proceedings of International Symposium Information
on Ships–ISIS, vol. 201, 2012, pp. 30–31.

[6] L. A. Nguyen, M. D. Le, S. H. Nguyen, T. H. H. Nghiem et al., “A
new and effective fuzzy pid autopilot for ships,” in SICE 2003 Annual
Conference (IEEE Cat. No. 03TH8734), vol. 3. IEEE, 2003, pp. 2647–
2650.

[7] L. Perera, J. Carvalho, and C. G. Soares, “Fuzzy logic based decision
making system for collision avoidance of ocean navigation under critical
collision conditions,” Journal of marine science and technology, vol. 16,
no. 1, pp. 84–99, 2011.

[8] M. R. Benjamin, J. J. Leonard, J. A. Curcio, and P. M. Newman,
“A method for protocol-based collision avoidance between autonomous
marine surface craft,” Journal of Field Robotics, vol. 23, no. 5, pp. 333–
346, 2006.

[9] M. Tannum and J. Ulvensøen, “Urban mobility at sea and on waterways
in norway,” in Journal of Physics: Conference Series, vol. 1357, no. 1.
IOP Publishing, 2019, p. 012018.

[10] M. J. Lewandowski, M. Fitzpatrick, and N. F. Kamradt, “Maritime mass
rescue interventions: Availability and associated technology,” COAST
GUARD NEW LONDON CT RESEARCH AND DEVELOPMENT
CENTER, Tech. Rep., 2010.

[11] W. C. Tan, C.-Y. Weng, Y. Zhou, K. H. Chua, and I.-M. Chen, “Historical
data is useful for navigation planning: Data driven route generation for
autonomous ship,” in 2018 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2018, pp. 7478–7483.

[12] S. Mao, E. Tu, G. Zhang, L. Rachmawati, E. Rajabally, and G.-B.
Huang, “An automatic identification system (ais) database for maritime
trajectory prediction and data mining,” in Proceedings of ELM-2016.
Springer, 2018, pp. 241–257.

[13] A. L. Ellefsen, X. Cheng, F. T. Holmeset, V. Æsøy, H. Zhang, and
S. Ushakov, “Automatic fault detection for marine diesel engine degrada-
tion in autonomous ferry crossing operation,” in 2019 IEEE International
Conference on Mechatronics and Automation (ICMA). IEEE, 2019, pp.
2195–2200.

[14] A. L. Ellefsen, V. Æsøy, S. Ushakov, and H. Zhang, “A comprehensive
survey of prognostics and health management based on deep learning
for autonomous ships,” IEEE Transactions on Reliability, vol. 68, no. 2,
pp. 720–740, 2019.

[15] G. Li, R. Mao, H. P. Hildre, and H. Zhang, “Visual attention assessment
for expert-in-the-loop training in a maritime operation simulator,” IEEE
Transactions on Industrial Informatics, 2019.

[16] L. P. Perera, B. Mo, L. A. Kristjánsson, P. Jonvik, and J. Svardal,
“Evaluations on ship performance under varying operational con-
ditions,” in Proceedings of the 34th International Conference on
Ocean, Offshore and Arctic Engineering (OMAE 2015), Newfoundland,
Canada,(OMAE2015-41793), 2015.

[17] (2006) Specifications of ntnu’s research vessel r/v gunnerus. [Online].
Available: https://www.ntnu.edu/c/documentlibrary/getf ile?uuid =
4b1280ed−378a−4715−bf34−5c33c340f01egroupId = 919518


