
Robot Vision for Surveillance and Security-Research Article

Development of a vision-based target
exploration system for snake-like robots
in structured environments

Guoyuan Li , Håkon Bjerkgaard Waldum, Marcus Olai Grindvik,
Ruben Svedal Jørundl and Houxiang Zhang

Abstract
Applying snake-like robots to environmental exploration has been a hot topic for years. How to achieve free navigation
for target search in a complex environment in a safe and efficient manner is one of the main tasks that researchers in the
field of robotics currently face. This article presents a target exploration system that takes advantages of visual sensing to
navigate the snake-like robot in structured environments. Two cameras are utilized in the system. The first one is
mounted on the head of the snake-like robot for target recognition and the other is an overhead camera which is
responsible for locating the robot and identifying surrounding obstacles. All dead ends in the environment can thus be
recognized using a template-based method. A search strategy for traversal of the dead ends is employed for generating
exploration paths. Several gaits are developed for the snake-like robot. By switching between these gaits, the snake-like
robot is able to follow the paths to search for the target. Two experiments are conducted in a maze environment. The
experimental results validate the effectiveness of the proposed system for snake-like robots exploring in structured
environments.

Keywords
Snake-like robot, gait generation, navigation, path planning, environmental perception

Date received: 14 February 2020; accepted: 25 May 2020

Topic: Robot Vision for Surveillance
Topic Editor: Mohsen Shahinpoor
Associate Editor: Jianhua Zhang

Introduction

There are increasing demanding exploration tasks in areas

like deep sea and nuclear plant that are inaccessible or

harmful to humans. The limited knowledge of the work

space, the position and orientation required for necessary

operations, and any unexpected environmental perturba-

tions constitute a challenging environment. Snake-like

robots are considered one of the most suitable mobile

robots to explore in such a complex environment. Com-

pared to other types of mobile robots, such as wheeled and

legged robots, the snake-like robots characterized by their

redundant morphology, low center of gravity, and diversity

of locomotion patterns are beneficial to avoid falling down,

getting stuck, and even getting damaged in severe condi-

tions. The last few decades have witnessed various appli-

cations of snake-like robots in complex environments, from

surveillance,1 search and rescue,2 surgery3 to inspection of

transmission lines4 and pipelines.5, 6

Department of Ocean Operations and Civil Engineering, Norwegian

University of Science and Technology, Ålesund, Norway

Corresponding author:

Guoyuan Li, Department of Ocean Operations and Civil Engineering,

Norwegian University of Science and Technology, Ålesund N-6025,

Norway.

Email: guoyuan.li@ntnu.no

International Journal of Advanced
Robotic Systems

July-August 2020: 1–11
ª The Author(s) 2020

DOI: 10.1177/1729881420936141
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://orcid.org/0000-0001-7553-0899
https://orcid.org/0000-0001-7553-0899
mailto:guoyuan.li@ntnu.no
https://doi.org/10.1177/1729881420936141
http://journals.sagepub.com/home/arx
https://creativecommons.org/licenses/by/4.0/
https://us.sagepub.com/en-us/nam/open-access-at-sage
https://us.sagepub.com/en-us/nam/open-access-at-sage
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881420936141&domain=pdf&date_stamp=2020-07-06

The versatile locomotion patterns of snake-like robots

play a key role in traversal of different types of environ-

ments.7 The design of snake-like locomotion dates back to

1970s. It is evident from the literature that the movement of

snake-like robots depends on not only their configurations

but also auxiliary equipment. For example, Hirose first

developed the active cord mechanism (ACM) robot and

applied passive wheels on the bottom of the robot.8 Each

joint of the robot can bend to the left and right, resulting in a

serpentine movement in 2-D plane. Snake-like robots with

active wheels/treads, such as ACM R49 and OmniTread

OT-4,10 were later developed for traversal of rough ter-

rains. Fewer modules are needed for these robots, and the

powered wheels/treads can provide the robots with enough

propulsion to climb over obstacles. Attempts of pure body

undulation of snake-like robots for 3-D locomotion pattern

generation have been made in the last decade, such as the

M-TRAN robot,11 the GZ-I robot,12 and the CMU’s snake-

like robot.13 These robots keep their body shapes changing

over time by coordinating all of their modules. The purpose

is to produce traveling body waves for propulsion. Apart

from the abovementioned locomotion patterns, snake-like

robots can also achieve rhythmic movement through body

expansion and contraction.14,15

For target exploration applications, such as the search

and rescue task, the navigation often includes localization,

planning, and search. When navigating in a complex envi-

ronment, a mobile robot must estimate its location through

onboard sensors, such as GPS, IMU, laser rangefinder, and

camera.16,17 Depending on the degree of environmental

awareness, localizing the robot can be achieved using geo-

metric and/or visual features. Recently, simultaneous loca-

lization and mapping (SLAM) becomes a popular topic in

the mobile robotics community. A variety of SLAM meth-

ods, such as filter-based SLAM and graph-based SLAM, are

developed to keep track of the robot while updating the map

of the environment.18 Once the robot’s position is deter-

mined, an optimal route for collision avoidance and target

searching can be computed using motion planning methods,

including A-star algorithm and rapidly exploring random

trees (RRTs) method.19 By means of path following control,

the robot will search along the route until a target is found.20

To date, visual sensing has been employed on snake-like

robots for exploration tasks. For instance, Ponte et al.

developed a structured light sensor and applied it to the

CMU’s snake-like robot for generating 3-D point clouds

for pole detection.21 Bing et al. employed an embedded

dynamic vision sensor on the head module of a snake-

like robot and proposed a head orientation compensation

method to ensure an acceptable swing of the robot for better

observation.22 Chang et al. equipped a robotic snake with a

monocular camera to capture images in each gait cycle and

utilized graph-based SLAM for self-localization in the

environment.23 In addition to the above research studies,

there are many similar works that can be found in the

literature.24–26

Although there are various navigation systems devel-

oped for snake-like robots, most of the research studies

either focus on mechanical design or make efforts on the

implementation of certain functions, such as gait genera-

tion, path planning, and trajectory tracking. In this article,

we aim to develop a complete target exploration system

from mechanical design, gait generation to visual-based

navigation implementation for snake-like robots in a com-

plex environment. The contributions of the article lie in (1)

a systematical implementation of the exploration system,

(2) a novel search strategy for exploration, and (3) verifica-

tion by a maze exploration experiment.

The rest of this article is organized as follows. In the

“Snake-like robot system overview” section, the overall

structure of the vision-based target exploration system

together with the snake-like robot construction and gait

generation is introduced. The “Vision-based navigation”

section presents the detailed development of the explora-

tion system from perception, planning, tracking to target

searching. Experimental results for target exploration in a

maze are described in the “Experiments” section. Conclu-

sion of this article is given in the last section.

Snake-like robot system overview

This section introduces the development of the snake-like

robot from the mechanical design, gait generation to con-

trol flow structure.

Mechanical design

Inspired by the GZ-I module in the study by Zhang et al.,12

a new mechanical design of the snake-like robot is pro-

posed. There are several improvements based on the GZ-I

module. First, the head part, as shown in Figure 1(a), is

specially designed to accommodate a camera. The camera

can be protected from unexpected events, especially from

collisions. Second, an open hole is made for the upper

part, as shown in Figure 1(b), which enables wires to go

through each module for power and signal transmission.

Third, from Figure 1(c), the bottom part is thickened and

hollowed out for housing hardware components.

An upper part or a head part, together with a bottom part,

composes a module that can rotate 180� about its axis.

Figure 1(d) shows the assembled snake-like robot, which

consists of five of such modules. It is noted that different

colors are employed on the head module, the second mod-

ule, and the tail module of the robot for pose tracking by an

overhead camera (see “Environmental perception” sec-

tion). Table 1 lists the hardware components of the

snake-like robot. Communication between the snake-like

robot and the graphical user interface (GUI) on a PC is

established by the Wi-Fi module on the ESP32 component.

All computation related to image processing is performed

on the PC.

2 International Journal of Advanced Robotic Systems

Gait generation

As described in the “Introduction” section, snake-like

robots are able to generate rhythmic movement by means

of coordinating all the modules they have in proper tem-

poral sequence and thus generating traveling waves for

propulsion. There have been a number of control methods

developed for locomotion generation of snake-like robots,

such as the gait table method,27 the analytical method,8 and

the bioinspired method.28

Among these methods, the sinusoidal generator, charac-

terized by its simplicity and capability of 3-D gait genera-

tion, is considered one of the most efficient approaches for

gait generation. Followed the work by Gonzalez-Gomez

et al.,29 we implement the control model using two groups

of sinusoidal generators

qp i; tð Þ ¼ Apsin
2p
T

t þ i� 1

2
Fp

0
@

1
Aþ Op; i 2 1; 3; 5f g

qy i; tð Þ ¼ Aysin
2p
T

t þ i� 2

2
Fy þ Fpy

0
@

1
Aþ Oy; i 2 2; 4f g

8>>>>>><
>>>>>>:

Table 1. Components used for the snake-like robot.

Component Amount Function

ESP32 1 Movement control and PC
communication

ESP32-CAM 1 Head mounted camera for target
searching

TowerPro
MG995

5 Servo motor of the snake-like robot

Battery 2000
mAh

4 Power supply of the snake-like robot

Battery
babysitter

1 Battery charger and monitor

Boost
converter

2 Voltage conversion for servos
and ESP32

Figure 1. Mechanical design of (a) head part, (b) upper part, (c) bottom part, and (d) assembly for the snake-like robot.

Li et al. 3

where qp and qy are the reference angles for the pitch mod-

ules and the yaw modules, respectively, Ap and Ay denote

the desired amplitude for the two groups of modules, T is

the module rotating period, Fp and Fy represent the phase

differences of the sinusoidal generators from the pitch

group and the yaw group, respectively, Fpy is the phase

difference between the pitch group and the yaw group, and

Op and Oy are the offsets of these sinusoidal generators.

There are seven gaits that have been implemented for

the snake-like robot, including forward, backward, turning,

clockwise (CW) and counterclockwise (CCW) rotating,

and left and right sidewinding. In this study, we set

T ¼ 2:5s, Ap ¼ Ay¼ 30�, and Op¼ 0� for all the gaits, with

an exception of Ay¼ 0� for the turning gait. Table 2 lists the

rest of the parameters for these gaits. It is noted that an

identical bending angle will be applied to the yaw modules

of the robot for the turning gait. These developed gaits are

verified in Algoryx—a professional physics engine for

engineering applications.30 Four of these gaits are illu-

strated in Figure 2.

Control flow

Figure 3 shows the control flow of the vision-based target

exploration system for snake-like robots. The snake-like

robot system includes the snake-like robot itself and visual

sensing information derived from onboard and environ-

mental cameras. As described in the “Gait generation” sec-

tion, the snake-like robot is able to perform different

locomotive gaits by means of sinusoidal generators. There-

fore, it is possible for the snake-like robot to switch among

the gaits to avoid collision during navigation. A GUI is

developed for three levels of interaction with the robot.

Through the GUI, one can remotely observe the robot’s

navigation in the environment, provide further information

when the robot reports suspicious target images, and even

manually control the robot for target searching. In addition,

the snake-like robot is designed to be able to navigate in an

autonomous manner from localization, planning to track-

ing. The navigation will stop once the target is found. For

details, refer to the “Vision-based navigation” section.

Vision-based navigation

This section presents the details of the vision-based navi-

gation system applied to the snake-like robot for target

Table 2. Gait parameters.

Gait

Parameters

Fp (rad) Fy (rad) Fpy (rad) Oy (�)

Forward 2p
3 0 0 0

Backward � 2p
3 0 0 0

Turning 2p
3 0 0 [�90, 90]

CW rotating 0 p � p
2 0

CCW rotating 0 p p
2 0

Right sidewinding 2p
3

p
3

p
9 0

Left sidewinding � 2p
3 � p

3 � p
9 0

CW: clockwise; CCW: counterclockwise

Figure 2. Example gaits for (a) forward, (b) turning, (c) CW rotating, and (d) right sidewinding. CW: clockwise.

4 International Journal of Advanced Robotic Systems

exploration. We take a maze example to illustrate how the

robot perceives the environment, makes plans, and follows

tracks for exploration.

Environmental perception

An overhead camera is employed above the maze, ser-

ving as an auxiliary sensor for the snake-like robot. The

whole maze is within the field of view of the camera.

The camera plays two roles in identifying the explora-

tion environment and providing location of the robot in

the maze.

The Canny edge detector is applied to detect the edges

of the maze. First, the intensity of the gradients in two

dimensions of the image is computed, followed by the

non-maximum suppression for identifying the location with

the sharpest change of the intensity value. After the sup-

pression operation, two thresholds, one for identifying

strong edges and the other for suppressing noise of edge

pixels and identifying weak edges, are applied to the image.

Then a probabilistic Hough transform is employed to fur-

ther find sets of pixels that make up these straight lines. As

a result, a black-and-white image representing the maze

together with a set of coordinates of the corresponding lines

can be obtained.

To be able to find the snake-like robot easier in the

maze, we color the surface of the first two modules and the

tail module in red, green, and purple, respectively, as

shown in Figure 1(d). The distinguishable colors make it

relatively easy to set masks and thresholds for removing the

surrounding of the robot. After thresholding the image

through the different masks, dilation and erosion are

applied to the result of the masks to remove noise pixels.

Contours are extracted from the result and the coordinates

for the center of these colored modules are obtained.

Collision avoidance is one of the key issues to be solved

when the snake-like robot navigates in the maze. As the

location of the robot can be obtained by the overhead cam-

era, we make use of the first two colored modules of the

snake-like robot and utilize virtual sensors to achieve colli-

sion detection. Figure 4 depicts how the virtual sensors are

designed for the snake-like robot. There are five virtual

sensors employed on the snake-like robot. Three of them

are mounted on the head module of the robot with a range

up to 210� for front collision detection; the other two sen-

sors applied on the second module of the robot with a range

of 30� play a role in side collision detection. All the virtual

sensors are constructed as sectors with a radius of 75 pixels.

The virtual sensors will take effect as far as there are inter-

sections between the lines of the maze and the sectors. The

snake-like robot will cancel the normal movement and per-

form evasive maneuvers based on the position of the trig-

gered virtual sensors.

Path planning and tracking

Given the start and the end positions of the snake-like robot

in the maze, planning a path will make the navigation more

safe and efficient. So far, there have been various planning

methods, such as potential field method, Dijkstra’s algo-

rithm, and RRT.19 In this study, we attempt to use both

RRT and RRT*—a variant of RRT that can converge to

an optimum, for path planning. Based on the work by Sakai

et al.,31 some modifications, such as changes of obstacle

type from circles to lines and the way to iterate forward,

have been made to incorporate the maze exploration task.

For every time when the algorithm creates a random node,

it will find the nearest node and try to iterate from that node

to the new random node. It has a certain probability of

Figure 4. Virtual sensors on the snake-like robot.

Snake-like robot

system

Gait generation

Visual sensing

Navigation

Gait selection

Localization
Dead end

recognition

Route tracking Search planning

GUI

Target not found

Visual sensing

Target not found

Human-machine

interaction

Remote monitoring

Remote control

Gait selection

Target found

Figure 3. Control flow diagram.

Li et al. 5

generating the random node that goes straight toward the

goal to make the iteration more efficient.

Figure 5 shows the examples of planning results of RRT

and RRT* in a maze. We set an edge distance of 30 pixels

to keep the snake-like robot from collision with the maze.

From the comparison, it is evident that the path by RRT has

many twists and turns, whereas the path by RRT* is more

linear and smooth. Considering the tracking efficiency of

the snake-like robot in the next stage, RRT* is more suit-

able to this maze exploration task.

To follow a planned path, the snake-like robot needs to

successively track each node in the path. Here, the head

module of the robot is set as the position reference of the

robot. This will facilitate distance computation and space

preservation for taking pictures from the head camera. The

solution to the tracking problem is to generate a sequence of

gaits so that the robot can move toward the desired waypoint.

According to the distance and the angle between the robot

and the path, different gaits will be selected during the track-

ing, as shown in Figure 6. The detailed tracking strategy is

illustrated in Algorithm 1.

Target exploration

For simplicity, there is only one target placed in the

maze and the target is in yellow that it can be easily

recognized by the head camera of the snake-like robot.

It should be noted the snake-like robot only has the

knowledge of the target, but no information about its

location in the maze at all.

Since the target has a high probability to be placed in the

dead ends of the maze, the dead ends need to be recognized

for global planning in the maze. A template-based dead-end

recognition is employed in this study. First, templates are

400 600 800 1000 1200 1400 1600 1800

X [pixel]

0

200

400

600

800

1000

(a)

(b)

Y
[p

ix
el

]

Start

End

400 600 800 1000 1200 1400 1600 1800

X [pixel]

0

200

400

600

800

1000

Y
[p

ix
el

]

Start

End

Figure 5. Examples of planning results using (a) RRT and (b)
RRT*. RRT: rapidly exploring random tree.

Algorithm 1. Path following algorithm.

Input: N – Positions of nodes of the path created by
RRT*

Parameters: p – The position of the head of the
snake-like robot; φ – The angle
between the snake-like robot and the
tracking line; Δ – The distance between
the head of snake-like robot and the
tracking line; s – distance threshold; λ
– positive proporttional gain

foreach current node ni ∈ N do
generate a tracking line according to ni−1 and ni;
calculate φ and Δ;
while ‖p − ni‖ > s do

check from Figure 6 for gait selection;
if turning gait selected then

θy(2, t) = θy(2, t − 1) + λΔ;
θy(2, t) =
sign(θy(2, t)) max(θy(2, t), 90◦);

θy(4, t) = θy(2, t);
perform the movement in one gait cycle;
if virtual sensors triggered then

perform an evasive maneuver (e.g., the
reversal of the gait);

end
end

| |

Forward

|Δ|

ϕ
ϕ

min ϕmax

Δmin

Δmax

Left/ right

sidewinding

CW/ CCW

rotating

CW/ CCW

rotating
TurningTurning

Turning

Turning Turning

Figure 6. Gait selection for the snake-like robot.

6 International Journal of Advanced Robotic Systems

generated by clipping out images of maze where dead

ends are identified manually. Then, each template is

checked by sliding it over the test maze image to com-

pare patch of the maze image under that template image.

The comparison returns a value of how similar the tem-

plate is to a given spot in the maze. Once the value

exceeds a threshold, the spot is recognized as a dead

end, and the center coordinate of the spot is recorded

for later use. Figure 7 shows an example of the result of

dead-end detection in a maze.

Suppose there are m dead ends in the maze. To find

out the global optimized traversal of all dead ends, one

has to run the RRT* method ðmþ 1Þ! times. This is

time-consuming and involves massive computation. To

improve the efficiency, we therefore seek for a subopti-

mal solution. Initially, a list of dead ends is recorded.

For every round of search, the planned paths between

each dead end and the position of the snake-like robot

are ranked in terms of length and curvature. The robot

then randomly selects one of the top two ranked paths to

follow. A picture will be taken by the head camera at

the end of the path-following process for target recog-

nition. The task will be terminated if the target is found.

Otherwise, the dead end corresponding to the selected

path is removed from the list. Then, a new round will be

repeated until the list of dead ends becomes null. In this

way, the execution of RRT* will be reduced to

mðmþ 1Þ=2 times.

Experiments

The experiment setup is shown in Figure 8. A maze with a

size of 1.5 � 1.5 m2 is constructed, in which the layout can

be easily adjusted by the blue holders. The overhead cam-

era is hanged over the maze with a distance that fits the

maze inside the frame of the camera. The snake-like robot

with a length about 0.45 m together with the target is ran-

domly placed in the maze. A laptop equipped with an Intel

Core i7 processor and 16-GB RAM is used for data

exchange and image processing.

Path tracking experiment

A path tracking experiment is carried out to verify the

tracking performance of the snake-like robot. First, a sim-

ple maze is established. Then, the robot and the target are

placed at ð448; 396Þ and ð431; 100Þ in pixel, respectively.

We set the initial heading of the robot toward the middle

corner below the maze so as to increase the difficulty of

tracking. After that, the RRT* algorithm is performed, fol-

lowed with the execution of the proposed path tracking

method.

Figure 9 illustrates the screenshots of the tracking

result from the overhead camera. By switching between

gaits, the robot successfully follows the planned path and

reaches the destination in about 75 s. The result of gait

changes as well as the turning angles is depicted in

Figure 10. In the first 5 s, the robot attempts to make

CW rotation for changing its orientation toward

the planned path. A risk of collision is then detected by

the virtual sensors. The robot responds to make lateral

shift and move backward to avoid to collide with the wall

in the maze. From time 10 s to 52 s, the robot frequently

switches between the turning and forward gaits, occasion-

ally mixed with sidewinding and CCW rotating gaits, to

keep its body as close as possible to the planned path.

Since the middle part of the path is straight, the robot just

moves forward until a turn of the path occurs. The robot

then turns to the right to follow the path from time 63 s to

69 s. Once it passes the turn of the path, it changes back to

the forward gait and arrives the destination in 6 s.

Figure 7. Dead-end recognition in a maze.

Figure 8. Experiment setup for target exploration in a maze.

Li et al. 7

Dead-end search experiment

To verify the ability of the vision-based exploration system,

a dead-end search experiment is conducted. A maze with

the same size to the one in the “Path tracking experiment”

section is constructed. The inner walls are modified so that

more spaces are set aside for the movement of the snake-

like robot. In this case, four dead ends are identified accord-

ing to the template-based method described in the “Target

exploration” section. The initial pose of the robot is set at

ð434; 375Þ in pixel toward about the upper left corner of the

maze, and the target is placed at one of the dead ends

around ð344; 466Þ in pixel.

The traversal of the four dead ends follows the search

strategy of dead ends described in the “Target exploration”

section. Three successive paths in CCW direction are thus

generated by the RRT* algorithm. By applying the path

following method described in Algorithm 1, the snake-

like robot navigates along these paths until the target is

found. The whole procedure lasts about 218 s. Figure 11

shows the screenshots of the search result from the over-

head camera. Each row of the figure corresponds to the

tracking result of each path, respectively. It is obvious that

the snake-like robot is able to track the paths. However,

more attempts are made by the robot, for example, at the

time 28, 86, and 131 s, for the transition from one path to

the other path. The trigger of evasive maneuver due to

collision detection by virtual sensors makes the robot move

back and forth to adjust its pose to adapt to path changes.

Figure 12 shows the switch of gaits and the images

obtained at each dead end. From Figure 12(a), turning and

forward are the majority of the gaits the robot used for path

tracking. There are also certain amount of sidewinding and

rotating gaits occurred during path tracking. Thanks to the

wide space in the maze, the robot does not collide with the

maze when applying one of the two gaits. It is noted that an

idle gait is added. It corresponds to the time period when

the robot reaches a dead end and keeps still for image

capture. This procedure lasts about 10 s. After the image

is captured, a simple color detection is performed for target

recognition. In Figure 12(b), the four positions from A to D

are the places where the robot takes the images, and the

arrows represent the direction of the head camera of the

robot. From the result, the robot succeeds to follow the

paths and discover the target at the last dead end.

Discussion

From the experiments, it can be seen that the proposed

vision-based exploration system works well on the snake-

like robot. Here, we discuss some potential improvements

to the system.

Figure 9. Screenshots of the path tracking experiment.

-80

-60

-40

-20

0

20

T
u
rn

in
g
 a

n
g
le

 (
°)

0 10 20 30 40 50 60 70

Time (s)

Backward

CW rotating

CCW rotating

Right sidewinding

Left sidewinding

Forward

Turning

Figure 10. Gait changes of the snake-like robot in the path
tracking experiment.

8 International Journal of Advanced Robotic Systems

The edge distance in the RRT* algorithm plays an

important role in the maze experiments. It prevents the

robot from collision with the walls of the maze. However,

from Figure 11, the edge distance cannot guarantee that the

robot has enough space to lateral shift or rotate when the

path is close to the wall. This may result in extra evasive

maneuvers when the robot switches gaits. A higher value of

edge distance may help, but it will narrow down the search

space and even fail to find available paths. Therefore, the

trade-off between the available paths and the amount of

evasive maneuvers needs to be considered before applying

the robot to a new maze.

There are sharp turns at the dead ends where two gen-

erated RRT* paths are connected. The results from Fig-

ures 11 and 12 show that they lead to inefficient tracking

of the snake-like robot. Indeed, the sharp turns are unne-

cessary, as there is no need for the snake-like robot to take

pictures at the exact location of the dead end. An alternative

is to design a mechanism to create a shortcut of the sharp

turn and thus reduce the collision probability and the track-

ing time.

The search strategy among the dead ends is another

possible improvement of this study. From the “Target

exploration” section, the search strategy relies only on the

metric of the length and the curvature between the robot

Figure 11. Screenshots of the dead-end search experiment.

-90

-60

-30

0

30

60

90

T
u
rn

in
g
 a

n
g
le

 (°
)

0 20 40 60 80 100 120 140 160 180 200

(a)

(b)

Idle

Backward

CW rotating

CCW rotating

Right sidewinding

Left sidewinding

Forward

Turning

A B C D

Figure 12. The results of (a) gait changes of the snake-like robot
and (b) captured images from the head camera in the dead-end
search experiment.

Li et al. 9

and the next dead end. This is efficient when there are a few

dead ends, such as the maze in the “Dead-end search

experiment” section. If the maze is big and complex, it

becomes time-consuming for ranking all of the dead ends.

Therefore, a pruning algorithm is needed to reduce the

number of dead ends to be evaluated. In this way, a sub-

optimal solution can be achieved in reasonable time.

To sum up, the proposed vision-based exploration sys-

tem is able to navigate the snake-like robot in the maze

environment. Nevertheless, greater efforts are needed to

improve the system to achieve fully autonomous

navigation.

Conclusion

In this article, we introduce a vision-based exploration sys-

tem that can be used by a snake-like robot for navigation in

structured environments. First, a head camera is integrated

into the mechanical design of the snake-like robot to

achieve visual sensing during navigation. Seven types of

gaits based on sinusoidal generators are developed so that

the robot can adapt to the environment. Next, we apply an

overhead camera to perceive the environment, such as the

location of the robot and the surrounding structure. Then, a

template-based method is utilized for dead-end detection in

the environment, and a search strategy among the dead

ends is employed for path planning. Using a path tracking

algorithm, the snake-like robot can navigate along the

planned paths for target exploration. We carry out target

exploration experiments in a maze environment. The

results show the proposed system is able to navigate the

snake-like robot to search for the target.

For future work, we will focus on (1) adding distance

sensors on the snake-like robot for better perception of the

environment, (2) refining the path planning algorithm by

taking the characteristics of the gaits into account, and (3)

improving the search strategy in terms of time and distance.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) received no financial support for the research,

authorship, and/or publication of this article.

ORCID iD

Guoyuan Li https://orcid.org/0000-0001-7553-0899

References

1. Granosik G, Hansen MG, and Borenstein J. The OmniTread

serpentine robot for industrial inspection and surveillance.

Ind Robot: Int J 2005; 32(2): 139–148.

2. Erkmen I, Erkmen AM, Matsuno F, et al. Snake robots to the

rescue! IEEE Robot Autom Mag 2002; 9(3): 17–25.

3. Omisore OM, Han S, Ren L, et al. A teleoperated snake-like

robot for minimally invasive radiosurgery of gastrointestinal

tumors. In: 2018 IEEE international conference on autono-

mous robot systems and competitions (ICARSC), Torres

Vedras, Portugal, 25–27 April 2018, pp. 123–129. New York,

USA: IEEE.

4. Wei W, Yu-Cheng B, Gong-Ping W, et al. The mechanism of

a snake-like robot’s clamping obstacle navigation on high

voltage transmission lines. Int J Adv Robot Syst 2013;

10(9): 330.

5. Trebuna F, Virgala I, Pástor M, et al. An inspection of pipe by

snake robot. Int J Adv Robot Syst 2016; 13(5): 1–12.

1729881416663668.

6. Selvarajan A, Kumar A, Sethu D, et al. Design and develop-

ment of a snake-robot for pipeline inspection. In: 2019 IEEE

student conference on research and development (SCOReD),

Bandar Seri Iskandar, Malaysia, 15–17 October 2019, pp.

237–242. New York, USA: IEEE.

7. Li G. Hierarchical control of limbless locomotion using a

bio-inspired CPG model. PhD Thesis, University of Ham-

burg, Hamburg, Germany, 2013.

8. Hirose S. Biologically inspired robots: Snake-like locomotors

and manipulators. Oxford: Oxford University Press, 1993.

9. Yamada H and Hirose S. Development of practical

3-dimensional active cord mechanism ACM-R4. J Robot

Mech 2006; 18(3): 305–311.

10. Borenstein J, Hansen M, and Borrell A. The OmniTread OT-4

serpentine robot—design and performance. J Field Robot

2007; 24(7): 601–621.

11. Kamimura A, Kurokawa H, Yoshida E, et al. Automatic

locomotion design and experiments or a modular

robotic system. IEEE/ASME Trans Mech 2005; 10(3):

314–325.

12. Zhang H, Gonzalez-Gomez J, Me Z, et al. Development of a

low-cost flexible modular robot GZ-I. In: 2008 IEEE/ASME

international conference on advanced intelligent mechatro-

nics, Xi’an, China, 2–5 July 2008, pp. 223–228. New York,

USA: IEEE.

13. Tesch M, Lipkin K, Brown I, et al. Parameterized and

scripted gaits for modular snake robots. Adv Robot 2009;

23(9): 1131–1158.

14. Rus D and Vona M. Crystalline robots: self-reconfiguration

with compressible unit modules. Auton Robots 2001; 10(1):

107–124.

15. Seok S, Onal CD, Cho KJ, et al. Meshworm: a peristaltic soft

robot with antagonistic nickel titanium coil actuators. IEEE/

ASME Trans Mech 2012; 18(5): 1485–1497.

16. Segarra D, Caballeros J, and Aguilar WG. Visual based

autonomous navigation for legged robots. In: International

conference on intelligent science and big data engineering

(eds. Y Peng, K Yu, J Lu, and X Jiang), 2018, pp. 22–34.

Cham: Springer.

17. Ferro M, Paolillo A, Cherubini A, et al. Vision-based naviga-

tion of omnidirectional mobile robots. IEEE Robot Autom

Lett 2019; 4(3): 2691–2698.

10 International Journal of Advanced Robotic Systems

https://orcid.org/0000-0001-7553-0899
https://orcid.org/0000-0001-7553-0899
https://orcid.org/0000-0001-7553-0899

18. Bresson G, Alsayed Z, Yu L, et al. Simultaneous localization

and mapping: a survey of current trends in autonomous driv-

ing. IEEE Trans Intell Veh 2017; 2(3): 194–220.

19. LaValle SM. Planning algorithms. Cambridge: Cambridge

University Press, 2006.

20. Tzafestas SG. Introduction to mobile robot control. Waltham,

MA, USA: Elsevier, 2013.

21. Ponte H, Queenan M, Gong C, et al. Visual sensing for devel-

oping autonomous behavior in snake robots. In: 2014 IEEE

international conference on robotics and automation (ICRA),

Hong Kong, China, 31 May–7 June 2014, pp. 2779–2784.

New York, USA: IEEE.

22. Bing Z, Cheng L, Huang K, et al. Towards autonomous loco-

motion: slithering gait design of a snake-like robot for target

observation and tracking. In: 2017 IEEE/RSJ international

conference on intelligent robots and systems (IROS), Vancou-

ver, BC, Canada, 24–28 September 2017, pp. 2698–2703.

New York, USA: IEEE.

23. Chang AH, Feng S, Zhao Y, et al. Autonomous, monocular,

vision-based snake robot navigation and traversal of cluttered

environments using rectilinear gait motion. arXiv preprint

arXiv:190807101, 2019.

24. Rollinson D, Bilgen Y, Brown B, et al. Design and architecture

of a series elastic snake robot. In: 2014 IEEE/RSJ international

conference on intelligent robots and systems, Chicago, IL,

USA, 14–18 September 2014, pp. 4630–4636. IEEE.

25. Mutlu M, Melo K, Vespignani M, et al. Where to place cam-

eras on a snake robot: focus on camera trajectory and motion

blur. In: 2015 IEEE international symposium on safety, secu-

rity, and rescue robotics (SSRR), West Lafayette, IN, USA,

18–20 October 2015, pp. 1–8. IEEE.

26. Au C and Jin P. Investigation of serpentine gait of a snake

robot with a wireless camera. In: 2016 12th IEEE/ASME

international conference on mechatronic and embedded sys-

tems and applications (MESA), Auckland, New Zealand, 29–

31 August 2016, pp. 1–6. New York, USA: IEEE.

27. Yim M. Locomotion with a unit-modular reconfigurable

robot. PhD Thesis, Stanford University, CA, USA, 1994.

28. Li G, Zhang H, Li W, et al. Design of neural circuit for

sidewinding of snake-like robots. In: 2014 IEEE interna-

tional conference on information and automation (ICIA),

Hailar, China, 28–30 July 2014, pp. 333–338. New York,

USA: IEEE.

29. Gonzalez-Gomez J, Zhang H, and Boemo E. Locomotion

principles of 1d topology pitch and pitch-yaw-connecting

modular robots. In: Habib MK (ed.) Bioinspiration and

robotics. Chapter 24. Rijeka: IntechOpen, 2007, pp.

403–428. DOI: 10.5772/5513.

30. Backman A. Algoryx—interactive physics. In: SIGRAD

2008, the annual SIGRAD conference special theme: inter-

action, Stockholm, Sweden, 27–28 November 2008, pp. 87–

87. Linköping Sweden: Linköping University Electronic

Press.

31. Sakai A, Ingram D, Dinius J, et al. Pythonrobotics: a python

code collection of robotics algorithms, 2018. https://arxiv.

org/ftp/arxiv/papers/1808/1808.10703.pdf

Li et al. 11

https://arxiv.org/ftp/arxiv/papers/1808/1808.10703.pdf
https://arxiv.org/ftp/arxiv/papers/1808/1808.10703.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

